Mechanical-Based Model for Extra-Fine Needle Tip Deflection Until Breaching of Tissue Surface
Tóm tắt
Từ khóa
Tài liệu tham khảo
Moreira, P., & Misra, S. (2014). Biomechanics-based curvature estimation for ultrasound-guided flexible needle steering in biological tissues. Annals of Biomedical Engineering. https://doi.org/10.1007/s10439-014-1203-5 .
Majewicz, A., Marra, S., van Vledder, M., Lin, M., Choti, M., Song, D., et al. (2012). Behavior of tip-steerable needles in ex vivo and in vivo tissue. IEEE Transactions on Biomedical Engineering, 59, 2705–2715.
Abayazid, M., Roesthuis, R. J., Reilink, R., & Misra, S. (2013). Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Transactions on Robotics, 29, 542–553.
Vrooijink, G., & Abayazid, M. (2014). Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. International Journal of Robotics Research, 33, 1361–1374.
Abolhassani, N., Patel, R., & Moallem, M. (2007). Needle insertion into soft tissue: A survey. Medical Engineering and Physics, 29, 413–431.
Okamura, A. M., Simone, C., & O’Leary, M. D. (2004). Force modeling for needle insertion into soft tissue. IEEE Transactions on Biomedical Engineering, 51, 1707–1716.
Asadian, A., Patel, R. V., & Kermani, M. R. (2014). Dynamics of translational friction in needle-tissue interaction during needle insertion. Annal of Biomedical Engineering, 42, 73–85.
Khadem, M., Rossa, C., Sloboda, R. S., Usmani, N., & Tavakoli, M. (2016). Mechanics of tissue cutting during needle insertion in biological tissue. IEEE Robotics and Automation Letter, 1, 800–807.
Barbé, L., Bayle, B., De Mathelin, M., & Gangi, A. (2007). Needle insertions modelling: Identifiability and limitations. Biomedical Signal Processing and Control, 2, 191–198.
van Gerwen, D. J., Dankelman, J., & van den Dobbelsteen, J. J. (2012). Needle–tissue interaction forces: A survey of experimental data. Medical Engineering and Physics, 34, 665–680.
Webster, R. J., III, Cowan, N. J., Chirikjian, G. S., & Okamura, M. (2006). Nonholonomic modelling of needle steering. International Journal of Robotics Research, 25, 509–525.
Yan, K., Ng, W., Ling, K., Yu, Y., Podder, T., Liu, T., & Cheng C. (2006). Needle steering modeling and analysis using unconstrained modal analysis. Proceedings of First IEEE/RAS-EMBS International Conference Biomedical Robotics and Biomechatronics (BioRob). https://doi.org/10.1109/BIOROB.2006.1639065
Khadem, M., Fallahi, B., Rossa, C., Sloboda, R., Usmani, N., & Tavakoli, M. (2015). A mechanics-based model for simulation and control of flexible needle insertion in soft tissue. Proceedings of IEEE International Conference on Robotics and Automation (pp. 2264–2269). https://doi.org/10.1109/ICRA.2015.7139499
Misra, S., Reed, K. B., Schafer, B. W., Ramesh, K. T., & Okamura, M. (2010). Mechanics of flexible needles robotically steered through soft tissue. International Journal of Robotics Research, 29, 1640–1660.
DiMaio, S. P., & Salcudean, S. E. (2005). Interactive simulation of needle insertion models. IEEE Transactions on Biomedical Engineering, 52, 1167–1179.
Goksel, O., Dehghan, E., & Salcudean, S. E. (2009). Modeling and simulation of flexible needles. Medical Engineering and Physics, 31, 1069–1078.
Alterovitz, R., Goldberg, K., & Okamura, A. (2005). Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. Proceedings of IEEE International Conference on Robotics and Automation (pp. 1640–1645). https://doi.org/10.1109/ROBOT.2005.1570348
Yamaguchi, S., Tsutsui, K., Satake, K., Morikawa, S., Shirai, Y., & Tanaka, H. (2014). Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian–Eulerian-based three-dimensional finite element analysis. Computers in Biology and Medicine, 53, 42–47.
Rossa, C., Khadem, M., Sloboda, R., Usmani, N., & Tavakoli, M. (2016). Adaptive quasi-static modelling of needle deflection during steering in soft tissue. IEEE Robotics and Automation Letter, 1, 916–923.
Assaad, W., Jahya, A., Moreira, P., & Misra, S. (2015). Finite-element modeling of a bevel-tipped needle interacting with gel. Journal of Mechanics in Medicine and Biology, 15, 1550079-1–1550079-15.
Barnett, A. C., Lee, Y.-S., & Moore, J. Z. (2015). Fracture mechanics model of needle cutting tissue. Journal of Manufacturing Science and Engineering, 138, 011005-1–011005-8.
Misra, S., Macura, K. J., Ramesh, K. T., & Okamura, A. M. (2009). The importance of organ geometry and boundary constraints for planning of medical interventions. Medical Engineering and Physics, 31, 195–206.
Jahya, A., Schouten, M. G., Fütterer, J. J., & Misra, S. (2012). On the importance of modelling organ geometry and boundary conditions for predicting three-dimensional prostate deformation. Computer Methods in Biomechanics and Biomedical Engineering. https://doi.org/10.1080/10255842.2012.694876 .
Roesthuis, R. J., van Veen, Y. R. J., Jahya, A., & Misra, S. (2011). Mechanics of needle-tissue interaction. Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems (pp. 2557–2563). https://doi.org/10.1109/IROS.2011.6048612
Lee, H., & Kim, J. (2014). Estimation of flexible needle deflection in layered soft tissues with different elastic moduli. Medical and Biological Engineering and Computing, 52, 729–740. https://doi.org/10.1007/s11517-014-1173-7 .
Mahvash, M., & Dupont, P. E. (2009). Fast needle insertion to minimize tissue deformation and damage. Proceedings of IEEE International Conference on Robotics and Automation (pp. 3097–3102). https://doi.org/10.1109/ROBOT.2009.5152617