Mechanical-Based Model for Extra-Fine Needle Tip Deflection Until Breaching of Tissue Surface

Ryosuke Tsumura1, Tadashi Miyashita2, Hiroyasu Iwata2
1Graduate School of Creative Science and Engineering, Waseda University, Tokyo, Japan
2Faculty of Science and Engineering, Waseda University, Tokyo, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Moreira, P., & Misra, S. (2014). Biomechanics-based curvature estimation for ultrasound-guided flexible needle steering in biological tissues. Annals of Biomedical Engineering. https://doi.org/10.1007/s10439-014-1203-5 .

Majewicz, A., Marra, S., van Vledder, M., Lin, M., Choti, M., Song, D., et al. (2012). Behavior of tip-steerable needles in ex vivo and in vivo tissue. IEEE Transactions on Biomedical Engineering, 59, 2705–2715.

Abayazid, M., Roesthuis, R. J., Reilink, R., & Misra, S. (2013). Integrating deflection models and image feedback for real-time flexible needle steering. IEEE Transactions on Robotics, 29, 542–553.

Vrooijink, G., & Abayazid, M. (2014). Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images. International Journal of Robotics Research, 33, 1361–1374.

Abolhassani, N., Patel, R., & Moallem, M. (2007). Needle insertion into soft tissue: A survey. Medical Engineering and Physics, 29, 413–431.

Okamura, A. M., Simone, C., & O’Leary, M. D. (2004). Force modeling for needle insertion into soft tissue. IEEE Transactions on Biomedical Engineering, 51, 1707–1716.

Asadian, A., Patel, R. V., & Kermani, M. R. (2014). Dynamics of translational friction in needle-tissue interaction during needle insertion. Annal of Biomedical Engineering, 42, 73–85.

Khadem, M., Rossa, C., Sloboda, R. S., Usmani, N., & Tavakoli, M. (2016). Mechanics of tissue cutting during needle insertion in biological tissue. IEEE Robotics and Automation Letter, 1, 800–807.

Barbé, L., Bayle, B., De Mathelin, M., & Gangi, A. (2007). Needle insertions modelling: Identifiability and limitations. Biomedical Signal Processing and Control, 2, 191–198.

van Gerwen, D. J., Dankelman, J., & van den Dobbelsteen, J. J. (2012). Needle–tissue interaction forces: A survey of experimental data. Medical Engineering and Physics, 34, 665–680.

Webster, R. J., III, Cowan, N. J., Chirikjian, G. S., & Okamura, M. (2006). Nonholonomic modelling of needle steering. International Journal of Robotics Research, 25, 509–525.

Yan, K., Ng, W., Ling, K., Yu, Y., Podder, T., Liu, T., & Cheng C. (2006). Needle steering modeling and analysis using unconstrained modal analysis. Proceedings of First IEEE/RAS-EMBS International Conference Biomedical Robotics and Biomechatronics (BioRob). https://doi.org/10.1109/BIOROB.2006.1639065

Khadem, M., Fallahi, B., Rossa, C., Sloboda, R., Usmani, N., & Tavakoli, M. (2015). A mechanics-based model for simulation and control of flexible needle insertion in soft tissue. Proceedings of IEEE International Conference on Robotics and Automation (pp. 2264–2269). https://doi.org/10.1109/ICRA.2015.7139499

Misra, S., Reed, K. B., Schafer, B. W., Ramesh, K. T., & Okamura, M. (2010). Mechanics of flexible needles robotically steered through soft tissue. International Journal of Robotics Research, 29, 1640–1660.

DiMaio, S. P., & Salcudean, S. E. (2005). Interactive simulation of needle insertion models. IEEE Transactions on Biomedical Engineering, 52, 1167–1179.

Goksel, O., Dehghan, E., & Salcudean, S. E. (2009). Modeling and simulation of flexible needles. Medical Engineering and Physics, 31, 1069–1078.

Alterovitz, R., Goldberg, K., & Okamura, A. (2005). Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. Proceedings of IEEE International Conference on Robotics and Automation (pp. 1640–1645). https://doi.org/10.1109/ROBOT.2005.1570348

Yamaguchi, S., Tsutsui, K., Satake, K., Morikawa, S., Shirai, Y., & Tanaka, H. (2014). Dynamic analysis of a needle insertion for soft materials: Arbitrary Lagrangian–Eulerian-based three-dimensional finite element analysis. Computers in Biology and Medicine, 53, 42–47.

Rossa, C., Khadem, M., Sloboda, R., Usmani, N., & Tavakoli, M. (2016). Adaptive quasi-static modelling of needle deflection during steering in soft tissue. IEEE Robotics and Automation Letter, 1, 916–923.

Assaad, W., Jahya, A., Moreira, P., & Misra, S. (2015). Finite-element modeling of a bevel-tipped needle interacting with gel. Journal of Mechanics in Medicine and Biology, 15, 1550079-1–1550079-15.

Barnett, A. C., Lee, Y.-S., & Moore, J. Z. (2015). Fracture mechanics model of needle cutting tissue. Journal of Manufacturing Science and Engineering, 138, 011005-1–011005-8.

Misra, S., Macura, K. J., Ramesh, K. T., & Okamura, A. M. (2009). The importance of organ geometry and boundary constraints for planning of medical interventions. Medical Engineering and Physics, 31, 195–206.

Jahya, A., Schouten, M. G., Fütterer, J. J., & Misra, S. (2012). On the importance of modelling organ geometry and boundary conditions for predicting three-dimensional prostate deformation. Computer Methods in Biomechanics and Biomedical Engineering. https://doi.org/10.1080/10255842.2012.694876 .

Roesthuis, R. J., van Veen, Y. R. J., Jahya, A., & Misra, S. (2011). Mechanics of needle-tissue interaction. Proceedings of IEEE/RSJ International Conference Intelligent Robots and Systems (pp. 2557–2563). https://doi.org/10.1109/IROS.2011.6048612

Lee, H., & Kim, J. (2014). Estimation of flexible needle deflection in layered soft tissues with different elastic moduli. Medical and Biological Engineering and Computing, 52, 729–740. https://doi.org/10.1007/s11517-014-1173-7 .

Mahvash, M., & Dupont, P. E. (2009). Fast needle insertion to minimize tissue deformation and damage. Proceedings of IEEE International Conference on Robotics and Automation (pp. 3097–3102). https://doi.org/10.1109/ROBOT.2009.5152617

Elgezua, I., Kobayashi, Y., & Fujie, M. G. (2014). Estimation of needle tissue interaction based on non-linear elastic modulus and friction force patterns. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4315–4320). https://doi.org/10.1109/IROS.2014.6943172