Measuring the Uncanny Valley Effect

Chin-Chang Ho1, Karl F. MacDorman1
1Indiana University, School of Informatics and Computing, Indianapolis, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arkes HR (1991) Costs and benefits of judgment errors: implications for debiasing. Psychol Bull 110(3):486–498. doi: 10.1037/0033-2909.110.3.486

Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1(1):71–81. doi: 10.1007/s12369-008-0001-3

Becker-Asano C, Ogawa K, Nishio S, Ishiguro H (2010) Exploring the uncanny valley with Geminoid HI-1 in a real-world application. In: Blashki K (ed) Proceedings of IADIS International Conference Interfaces and Human Computer Interaction. IADIS Press, Lisbon, Portugal, pp 121–128

Bentler PM (1969) Semantic space is (approximately) bipolar. J Psychol 71(1):33–40. doi: 10.1080/00223980.1969.10543067

Bentler PM (1990) Comparative fit indexes in structural models. Psychol Bull 170(2):238–246. doi: 10.1037/0033-2909.107.2.238

Burleigh TJ, Schoenherr JR (2015) A reappraisal of the uncanny valley: categorical perception or frequency-based sensitization? Front Psychol 5(1488):1–19. doi: 10.3389/fpsyg.2014.01488

Chattopadhyay D, MacDorman KF (2016) Familiar faces rendered strange: Why inconsistent realism drives characters into the uncanny valley. J Vis, 16(11):7, 1–25

Cheetham M, Pavlovic I, Jordan N, Suter P, Jäncke L (2013) Category processing and the human likeness dimension of the uncanny valley hypothesis: eye-tracking data. Front Psychol 4(108):1–12. doi: 10.3389/fpsyg.2013.00108

Cheetham M, Suter P, Jäncke L (2011) The human likeness dimension of the “uncanny valley hypothesis”: behavioral and functional MRI findings. Front Hum Neurosci 5(125):1–14. doi: 10.3389/fnhum.2011.00126

Chin WW, Todd PA (1995) On the use, usefulness, and ease of use of structural equation modeling in MIS research: a note of caution. MIS Q 19(2):237–246. doi: 10.2307/249690

Dunning D, Johnson K, Ehrlinger J, Kruger J (2003) Why people fail to recognize their own incompetence. Curr Dir Psychol Sci 12(3):83–87. doi: 10.1111/1467-8721.01235

Feldman NH, Griffiths TL, Morgan JL (2009) The influence of categories on perception: explaining the perceptual magnet effect as optimal statistical inference. Psychol Rev 116(4):752–782. doi: 10.1037/a0017196

Fox CR, Clemen RT (2005) Subjective probability assessment in decision analysis: partition dependence and bias toward the ignorance prior. Manag Sci 51(9):1417–1432. doi: 10.1287/mnsc.1050.0409

Gärling T (1976) A multidimensional scaling and semantic differential technique study of the perception of environmental settings. Scand J Psychol 17(1):323–332. doi: 10.1111/j.1467-9450.1976.tb00248.x

Gefen D, Straub D, Boudreau M (2000) Structural equation modeling and regression: guidelines for research practice. Commun Assoc Inf Syst 4(7):1–79

Gerbing DW, Hamilton JG (1996) Viability of exploratory factor analysis as a precursor to confirmatory factor analysis. Struct Equ Model 3(1):62–72. doi: 10.1080/10705519609540030

Goetz J, Kiesler S, Powers A (2003) Matching robot appearance and behavior to tasks to improve human-robot cooperation. In: Proceedings of the 12th IEEE International Workshop on Robot and Human Interactive Communication. IEEE Press, Piscataway, pp 55–60. doi: 10.1109/ROMAN.2003.1251796

Hanson D (2005) Expanding the aesthetic possibilities for humanoid robots. In: Proceedings of the views of the uncanny valley workshop. IEEE-RAS International Conference on Humanoid Robots. December 5, Tsukuba, Japan

Harnad S (1987) Category induction and representation. In: Harnad S (ed) Categorical perception: the groundwork of cognition. Cambridge University Press, New York, pp 535–565

Hashimoto T, Nakane H, Kobayashi H (2013) Android patient robot simulating depressed patients for diagnosis training of psychiatric trainees. In: Proceedings of the Second IEEE International Conference on Robot, Vision and Signal Processing. IEEE Press, Piscataway, pp 247–252. doi: 10.1109/RVSP.2013.63

Ho C-C, MacDorman KF (2010) Revisiting the uncanny valley theory: developing and validating an alternative to the Godspeed indices. Comput Hum Behav 26(6):1508–1518. doi: 10.1016/j.chb.2010.05.015

Ho C-C, MacDorman KF, Pramono ZAD (2008) Human emotion and the uncanny valley: A GLM, MDS, and isomap analysis of robot video ratings. In: Proceedings of the Third ACM/IEEE International Conference on Human-Robot Interaction (pp. 169–176). ACM, New York. doi: 10.1145/1349822.1349845

Kätsyri J, Förger K, Mäkäräinen M, Takala T (2015) A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness. Front Psychol 6(390):1–16. doi: 10.3389/fpsyg.2015.00390

Kikutani M, Roberson D, Hanley JR (2010) Categorical perception for unfamiliar faces: the effect of covert and overt face learning. Psychol Sci 21(6):865–872. doi: 10.1177/0956797610371964

Kruger J, Dunning D (1999) Unskilled and unaware of it: how difficulties in recognizing one’s own incompetence lead to inflated self-assessments. J Personal Soc Psychol 77(6):1121–1134. doi: 10.1037/0022-3514.77.6.1121

Looser CE, Wheatley T (2010) The tipping point of animacy: how, when, and where we perceive life in a face. Psychol Sci 21(12):1854–1862. doi: 10.1177/0956797610388044

Lorr M, Wunderlich RA (1988) A semantic differential mood scale. J Clin Psychol 44(1):33–36

MacDorman KF, Chattopadhyay D (2016) Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. Cognition 146:190–205. doi: 10.1016/j.cognition.2015.09.019

MacDorman KF, Entezari SO (2015) Individual differences predict sensitivity to the uncanny valley. Interact Stud 16(2):141–172. doi: 10.1075/is.16.2.01mac

MacDorman KF, Green RD, Ho C-C, Koch C (2009) Too real for comfort: Uncanny responses to computer generated faces. Comput Hum Behav 25(3):695–710. doi: 10.1016/j.chb.2008.12.026

MacDorman KF, Ishiguro H (2006a) The uncanny advantage of using androids in social and cognitive science research. Interact Stud 7(3):297–337. doi: 10.1075/is.7.3.03mac

MacDorman KF, Ishiguro H (2006b) Opening Pandora’s uncanny box: reply to commentaries on the uncanny advantage of using androids in social and cognitive science research. Interact Stud 7(3):361–368. doi: 10.1075/is.7.3.10mac

MacDorman KF, Vasudevan SK, Ho C-C (2009) Does Japan really have robot mania? Comparing attitudes by implicit and explicit measures. AI Soc 23(4):485–510. doi: 10.1007/s00146-008-0181-2

Macrae CN, Bodenhausen GV (2000) Social cognition: thinking categorically about others. Annu Rev Psychol 51(1):93–120. doi: 10.1146/annurev.psych.51.1.93

Mangan BB (2015) The uncanny valley as fringe experience. Interact Stud 16(2):193–199. doi: 10.1075/is.16.2.05man

Mathur MB, Reichling DB (2016) Navigating a social world with robot partners: a quantitative cartography of the uncanny valley. Cognition 146:22–32. doi: 10.1016/j.cognition.2015.09.008

Meah LFS, Moore RK (2014) The uncanny valley: a focus on misaligned cues. In: Beetz M, Johnston B, Williams M-A (eds) Social robotics, LNAI, vol 8755. Springer, Cham, pp 256–265. doi: 10.1007/978-3-319-11973-1_26

Michalowski MP, Sabanovic S, Simmons R (2006) A spatial model of engagement for a social robot. In: Proceedings of the Ninth IEEE International Workshop on Advanced Motion Control. IEEE Press, Piscataway, pp 762–767. doi: 10.1109/AMC.2006.1631755

Misselhorn C (2009) Empathy with inanimate objects and the uncanny valley. Minds Mach 19(3):345–459. doi: 10.1007/s11023-009-9158-2

Mitchell WJ, Szerszen Sr, KA, Lu AS, Schermerhorn PW, Scheutz M, MacDorman KF (2011). A mismatch in the human realism of face and voice produces an uncanny valley. i-Perception, 2(1), 10–12. doi: 10.1068/i0415

Moore RK (2012) A Bayesian explanation of the ‘uncanny valley’ effect and related psychological phenomena. Sci Rep 2(864):1–5. doi: 10.1038/srep00864

Mori M (2012) The uncanny valley. IEEE Robotics and Automation (trans: MacDorman KF, Kageki N) 19(2), 98–100 doi: 10.1109/MRA.2012.2192811 (Original work published in 1970)

Nomura T, Kanda T, Suzuki T, Kato K (2004) Psychology in human-robot communication: an attempt through investigation of negative attitudes and anxiety toward robots. In: Proceedings of the 13th IEEE International Workshop on Robot and Human Interactive Communication. IEEE Press, Piscataway, pp 35–40

Nomura T, Kanda T (2016) Rapport–expectation with a robot scale. Int J Soc Robot (8)1: 21–30. doi: 10.1007/s12369-015-0293-z

Prakash A, Rogers WA (2015) Why some humanoid faces are perceived more positively than others: effects of humanlikeness and task. Int J Soc Robot 7(2):309–0331. doi: 10.1007/s12369-014-0269-4

Pronin E (2007) Perception and misperception of bias in human judgment. Trends Cognit Sci 11(1):37–43. doi: 10.1016/j.tics.2006.11.001

Pronin E, Lin DY, Ross L (2002) The bias blind spot: perceptions of bias in self versus others. Personal Soc Psychol Bull 28(3):369–381. doi: 10.1177/0146167202286008

Ramey CH (2005) The uncanny valley of similarities concerning abortion, baldness, heaps of sand, and humanlike robots. In: Proceedings of the Views of the Uncanny Valley Workshop. IEEE-RAS International Conference on Humanoid Robots. December 5, Tsukuba, pp 8–13

Riek LD, Rabinowitch TC, Chakrabarti B, Robinson P (2009) Empathizing with robots: fellow feeling along the anthropomorphic spectrum. In: Proceedings of the Third International Conference on Affective Computing and Intelligent Interaction and Workshops. Amsterdam, pp 1–6, September 10–12. doi: 10.1109/ACII.2009.5349423

Rosenberg S, Nelson C, Vivekananthan P (1968) A multidimensional approach to the structure of personality impressions. J Personal Soc Psychol 97(4):283–294. doi: 10.1037/h0026086

Rugg G, McGeorge P (1997) The sorting techniques: a tutorial paper on card sorts, picture sorts and item sorts. Expert Syst 12(4):80–93. doi: 10.1111/1468-0394.00045

Seyama J, Nagayama RS (2007) The uncanny valley: the effect of realism on the impression of artificial human faces. Presence 16(4):337–351. doi: 10.1162/pres.16.4.337

ter Hofstede F, Audenaert A, Steenkamp J-BEM, Wedel M (1998) An investigation into the association pattern techniques as a quantitative approach to measuring means-end chains. Int J Res Mark 15(1):37–50. doi: 10.1016/S0167-8116(97)00029-3

Tondu B, Bardou N (2011) A new interpretation of Mori’s uncanny valley for future humanoid robots. Int J Robot Autom 26(3):337–348. doi: 10.2316/Journal.206.2011.3.206-3348

Turkle S (2007) Authenticity in the age of digital companions. Interact Stud 8(3):501–517. doi: 10.1075/is.8.3.11tur

Uekermann F, Herrmann A, Wentzel D, Landwehr JR (2008) The influence of stimulus ambiguity on category and attitude formation. Rev Manag Sci 4(1):33–52. doi: 10.1007/s11846-009-0034-5

van Schuur WH, Kiers HAL (1994) Why factor analysis often is the incorrect model for analyzing bipolar concepts and what model to use instead. Appl Psychol Meas 18(2):97–110. doi: 10.1177/014662169401800201

Vanden Abeele P (1992) A means-end study of dairy consumption motivation. Report for the European Commission, EC Regulation 1000/90–43 ST

Vlachos E, Scharfe H (2015) An open-ended approach to evaluating android faces. In: Proceedings of the 24th IEEE International Symposium on Robot and Human Interactive Communication. IEEE Press, Piscataway, pp 746–751

Walters M, Marcos S, Syrdal DS, Dautenhahn K (2013) An interactive game with a robot: People’s perceptions of robot faces and a gesture-based user interface. In: Proceedings of the Sixth International Conference on Advanced Computer-human Interactions. IARIA Press, Lisbon, Portugal, pp 123–128

Yamada Y, Kawabe T, Ihaya K (2013) Categorization difficulty is associated with negative evaluation in the “uncanny valley” phenomenon. Jpn Psychol Res 55(1):20–32. doi: 10.1111/j.1468-5884.2012.00538.x

Yamauchi T (2005) Labeling bias and categorical induction: generative aspects of category information. J Exp Psychol 31(3):538–553. doi: 10.1037/0278-7393.31.3.538