Measuring serial dependence in categorical time series

AStA Advances in Statistical Analysis - Tập 92 - Trang 71-89 - 2008
Christian H. Weiß1, Rainer Göb1
1Institute of Mathematics, Department of Statistics, University of Würzburg, Würzburg, Germany

Tóm tắt

The analysis of time-indexed categorical data is important in many fields, e.g., in telecommunication network monitoring, manufacturing process control, ecology, etc. Primary interest is in detecting and measuring serial associations and dependencies in such data. For cardinal time series analysis, autocorrelation is a convenient and informative measure of serial association. Yet, for categorical time series analysis an analogous convenient measure and corresponding concepts of weak stationarity have not been provided. For two categorical variables, several ways of measuring association have been suggested. This paper reviews such measures and investigates their properties in a serial context. We discuss concepts of weak stationarity of a categorical time series, in particular of stationarity in association measures. Serial association and weak stationarity are studied in the class of discrete ARMA processes introduced by Jacobs and Lewis (J. Time Ser. Anal. 4(1):19–36, 1983).

Tài liệu tham khảo

Agresti, A.: Categorical Data Analysis. Wiley, New York (1990) Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis—Forecasting and Control, 3rd edn. Prentice Hall, Englewood Cliffs (1994) Brockwell, P.J., Davis, R.A.: Introduction to Time Series and Forecasting, 2nd edn. Springer, New York (2002) Gibbons, J.D.: Nonparametric Measures of Association. Quantitative Applications in the Social Sciences. Sage, Thousand Oaks (1993) Göb, R.: Data mining and statistical control—A review and some links. In: Lenz, Wilrich (eds.) Frontiers in Stat. Qual. Control, vol. 8, pp. 285–308. Physica, Heidelberg (2006) Goodman, L.A., Kruskal, W.H.: Measures of Association for Cross Classifications. Springer, New York (1979) Jacobs, P.A., Lewis, P.A.W.: Discrete time series generated by mixtures. I: Correlational and runs properties. J. R. Stat. Soc. B 40(1), 94–105 (1978a) Jacobs, P.A., Lewis, P.A.W.: Discrete time series generated by mixtures. II: Asymptotic properties. J. R. Stat. Soc. B 40(2), 222–228 (1978b) Jacobs, P.A., Lewis, P.A.W.: Discrete time series generated by mixtures. III: Autoregressive processes (DAR(p)). Naval Postgraduate School Tech. Report NPS55-78-022 (1978c) Jacobs, P.A., Lewis, P.A.W.: Stationary discrete autoregressive-moving average time series generated by mixtures. J. Time Ser. Anal. 4(1), 19–36 (1983) Johnson, N.L., Kotz, S., Balakrishnan, N.: Discrete Multivariate Distributions. Wiley, New York (1997) Katz, R.W.: On some criteria for estimating the order of a Markov chain. Technometrics 23(3), 243–249 (1981) Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998) Liebetrau, A.M.: Measures of Association. Sage, Thousand Oaks (1983) McGee, M., Harris, I.R.: Coping with nonstationarity in categorical time series. Technical Report SMU-TR-319, 2nd version, Southern Methodist University, Dallas. Download: http://www.smu.edu/statistics/TechReports/TR319.pdf McKenzie, E.: Discrete variate time series. In: Rao, C.R., Shanbhag, D.N. (eds.) Handbook of Statistics, pp. 573–606. Elsevier, Amsterdam (2003) Shorrocks, A.F.: The measurement of mobility. Econometrica 46(5), 1013–1024 (1978) Theil, H.: Statistical Decomposition Analysis. North-Holland, Amsterdam (1972) Uschner, H.: Streuungsmessung nominaler Merkmale mit Hilfe von Paarvergleichen. Doctoral Dissertation, Friedrich-Alexander-University Erlangen-Nürnberg(1987) Vogel, F., Kiesl, H.: Deskriptive und induktive Eigenschaften zweier Streuungsmaße für nominale Merkmale. In: Vogel (ed.): Arbeiten aus der Statistik, Otto-Friedrich-University Bamberg (1999) Weiss, G.M., Hirsh, H.: Learning to predict rare events in event sequences. In: Proc. of the 4th Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD-98), pp. 359–363 (1998)