Đo Đạc Độ Dẫn Nhiệt Của Dung Dịch Chứa Các Nanoparticle Oxit

Journal of Heat Transfer - Tập 121 Số 2 - Trang 280-289 - 1999
S. Lee1, Stephen U. S. Choi2, Shuai Li3, J. A. Eastman3
1Department of Mechanical Engineering, Kyonggi University, Suwon, Kyonggi-Do Korea
2Energy Technology Division Argonne National Laboratory, Argonne, IL 60439
3Materials Science Division,Argonne National Laboratory,Argonne,IL 60439

Tóm tắt

Các nanofluid oxit đã được sản xuất và độ dẫn nhiệt của chúng đã được đo bằng phương pháp dây nóng tạm thời. Kết quả thí nghiệm cho thấy các nanofluid này, chứa một lượng nhỏ các nanoparticle, có độ dẫn nhiệt cao hơn đáng kể so với các chất lỏng tương tự không chứa nanoparticle. So sánh giữa các thí nghiệm và mô hình Hamilton và Crosser cho thấy mô hình có khả năng dự đoán độ dẫn nhiệt của các nanofluid chứa các hạt Al2O3 kết agglomerated lớn. Tuy nhiên, mô hình dường như không đầy đủ cho các nanofluid chứa các hạt CuO. Điều này gợi ý rằng không chỉ hình dạng của các hạt mà cả kích thước cũng được coi là yếu tố quyết định trong việc cải thiện độ dẫn nhiệt của các nanofluid.

Từ khóa


Tài liệu tham khảo

Abernethy R. B. , BenedictR. P., and DowdellR. B., 1985, “ASME Measurement Uncertainty,” ASME Journal of Fluids Engineering, Vol. 107, pp. 161–164.

Ahuja A. S. , 1975, “Augmentation of Heat Transport in Laminar Flow of Polystyrene Suspensions. I. Experiments and Results,” J. Appl. Phys., Vol. 46, No. 8, pp. 3408–3416.

Ashley S. , 1994, “Small-scale Structure Yields Big Property Payoffs,” Mechanical Engineering, Vol. 116, No. 2, pp. 52–57.

Auriault J.-L. , and EneH. I., 1994, “Macroscopic Modelling of Heat Transfer in Composites with Interfacial Thermal Barrier,” Int. J. Heat Mass Transfer, Vol. 37, No. 18, pp. 2885–2892.

Bentley J. P. , 1984, “Temperature Sensor Characteristics and Measurement System Design,” J. Phys. E: Sci. Instrum., Vol. 17, pp. 430–439.

Benveniste Y. , 1987, “Effective Thermal Conductivity of Composites with a Thermal Contact Resistance between the Constituents,” J. Appl. Phys., Vol. 61, No. 16, pp. 2840–2843.

Bonnecaze R. R. , and BradyJ. F., 1991, “The Effective Conductivity of Random Suspensions of Spherical Particles,” Proc. R. Soc. Lond., Vol. A432, pp. 445–465.

Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, 2nd Ed., Oxford University Press, New York, p. 510.

Chiew Y. C. , and GlandtE. D., 1987, “Effective Conductivity of Dispersions: The Effect of Resistance at the Particle Surfaces,” Chem. Eng. Sci., Vol. 42, No. 11, pp. 2677–2685.

Choi, U. S., 1995, “Enhancing Thermal Conductivity of Fluids with Nanoparticles,” Developments and Applications of Non-Newtonian Flows, D. A. Siginer and H. P. Wang, eds., FED-Vol. 231/MD-Vol. 66, ASME, New York, pp. 99–105.

Coleman, H. W., and Steele, W. G., 1989, Experimentation and Uncertainty Analysis for Engineers, John Wiley and Sons, New York.

Concalves L. C. C. , and KolodziejJ. A., 1993, “Determination of Effective Thermal Conductivity in Fibrous Composites with Imperfect Thermal Contact between Constituents,” Int. Comm. Heat Mass Transfer, Vol. 20, pp. 111–121.

Davis R. H. , 1986, “The Effective Thermal Conductivity of a Composite Material with Spherical Inclusions,” International Journal of Thermophysics, Vol. 7, No. 3, pp. 609–620.

Eastman, J. A., Choi, U. S., Li, S., Thompson, L. J., and Lee, S., 1997, “Enhanced Thermal Conductivity through the Development of Nanofluids,” Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, Vol. 457, Materials Research Society, Boston, pp. 3–11.

Flik M. I. , and TienC. L., 1990, “Size Effect on the Thermal Conductivity of High-T Thin-Film Superconductors,” ASME JOURNAL OF HEAT TRANSFER, Vol. 112, pp. 872–881.

Geiger, G. H., and Poirier, D. R., 1973, Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, p. 190.

Gleiter H. , 1989, “Nanocrystalline Materials,” Prog. Mater. Sci., Vol. 33, pp. 223–315.

Granqvist C. G. , and BuhrmanR. A., 1976, “Ultrafine Metal Particles,” J. Appl. Phys., Vol. 47, p. 22002200.

Hamilton R. L. , and CrosserO. K., 1962, “Thermal Conductivity of Heterogeneous Two-Component Systems,” I & EC Fundamentals, Vol. 1, No. 3, pp. 187–191.

Hashin Z. , and ShtrikmanS., 1962, “A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials,” J. Appl. Phys., Vol. 33, No. 10, pp. 3125–3131.

Hu Z. S. , and DongJ. X., 1998, “Study on Antiwear and Reducing Friction Additive of Nanometer Titanium Oxide,” WEAR, Vol. 216, pp. 92–96.

Jackson, D. J., 1975, Classical Electrodynamics, 2nd Ed., John Wiley and Sons, London.

Jeffrey D. J. , 1973, “Conduction Through a Random Suspension of Spheres,” Proc. R. Soc. Lond., Vol. A335, pp. 355–367.

Johns A. I. , ScottA. C., WatsonJ. T. R., and FergusonD., 1988, “Measurement of the Thermal Conductivity of Gases by the Transient Hot Wire Method,” Phil. Trans. R. Soc. Lond., Vol. A325, pp. 295–356.

Kestin J. , and WakehamW. A., 1978, “A Contribution to the Theory of the Transient Hot-wire Technique for Thermal Conductivity Measurement,” Physica, Vol. 92A, pp. 102–116.

Kimoto K. , KamilayaY., NonoyamaM., and UyedaR., 1963, “An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure,” Jpn. J. Appl. Phys., Vol. 2, p. 702702.

Lee, S. P., and Choi, U. S., 1996, “Application of Metallic Nanoparticle Suspensions in Advanced Cooling Systems,” Recent Advances in Solids/Structures and Application of Metallic Materials, Y. Kwon, D. Davis, and H. Chung, eds., PVP-Vol. 342/MD-Vol. 72, ASME, New York, pp. 227–234.

Lu S. , and LinH., 1996, “Effective Conductivity of Composites Containing Aligned Spherical Inclusions of Finite Conductivity,” J. Appl. Phys., Vol. 79, No. 9, pp. 6761–6769.

Majumdar, A., 1998, “Microscale Energy Transport in Solids,” Microscale Energy Transport, C. L. Tien, A. Majumdar, and F. Gerner, eds., Taylor & Francis, Washington, DC.

Masuda H. , EbataA., TeramaeK., and HishinumaN., 1993, “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 Ultra-fine particles),” Netsu Bussei (Japan), Vol. 4, No. 4, pp. 227–233.

Maxwell, J. C., 1881, “A Treatise on Electricity and Magnetism,” 2nd Ed., Vol. 1, Clarendon Press, Oxford, U.K., p. 435.

Nagasaka Y. , and NagashimaA., 1981, “Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-wire Method,” J. Phys. E: Sci. Instrum., Vol. 14, pp. 1435–1440.

Ni F. , GuG. Q., and ChenK. M., 1997, “Effective Thermal Conductivity of Nonlinear Composite Media with Contact Resistance,” Int. J. Heat Mass Transfer, Vol. 40, pp. 943–949.

Roder H. M. , 1981, “A Transient Hot Wire Thermal Conductivity Apparatus for Fluids,” Journal of Research of the National Bureau of Standards, Vol. 86, No. 5, pp. 457–493.

Rohrer H. , 1996, “The Nanoworld: Chances and Challenges,” Microelectronic Engineering, Vol. 32, No. 1–4, pp. 5–14.

Sohn C. W. , and ChenM. M., 1981, “Microconvective Thermal Conductivity in Dispersed Two-Phase Mixtures as Observed in a Low Velocity Couette Flow Experiment,” ASME JOURNAL OF HEAT TRANSFER, Vol. 103, pp. 47–51.

Soyez, G., Eastman, J. A., DiMelfi, R. J., and Thompson, L. J., 1998, private communication.

Touloukian, Y. S., and Ho, C. Y., eds., 1970 to 1977, Thermal Properties of Matter, The TPRC Data Series, Plenum Press, New York.