Measures on cylindric algebras
Tài liệu tham khảo
H. Andréka, T. Gergely and I. Németi, On universal algebraic construction of logics,Studia Logica,36 (1977), 9–47.
J. L. Bell and M. Machover,A Course in Mathematical Logic, North-Holland (Amsterdam, 1977).
R. Chuaqui,Foundations of statistical methods using a semantical definition of probability, Mathematical Logic in Latin America, North-Holland (Amsterdam, 1978).
J. E. Fenstad,Representations of probabilities defined on first order languages. Sets, Models and Recursion Theory. North-Holland (Amsterdam, 1967).
H. Gaifman, Concerning measures in first order calculi,Israel J. Math.,2 (1964), 1–18.
P. R. Halmos,Lectures on Boolean algebras, Van Nostrand (Princeton, 1963).
L. Henkin, J. D. Monk and A. Tarski,Cylindric Algebras I, North-Holland (Amsterdam, 1971).
L. Henkin, J. O. Monk, A. Tarski, H. Andréka, I. Németi,Cylindric Set Algebras, Lecture Notes in Math.,883 (Springer, 1981).
A. Horn and A. Tarski, Measures in Boolean algebras,Trans. Amer. Math. Soc.,64 (1948), 467–497.
J. Loš, Remarks on foundations of probability,Proc. Intern. Congress of Mathematicians, Stockholm, 1962.
J. F. Lynch, Almost sure theories,Annals of Math. Logic,18 (1980).
C. Morgenstern, The measure quantifier,The Journal of Symb. Logic V.,44, 1979.
I. Németi, Connections between cylindric algebras and initial algebra semantics of CF languages, Math. Logic in Computer Science,Colloq. Math. Soc. J. Bolyai,26, North-Holland, (1981), pp. 561–606.
J. Schwartz, Cylindric algebras with filter quantifiers, Z. Math. Logik u. Grundl. Math,26, (1980).
D. Scott and P. Krauss,Assigning probabilities to logical formulas, Aspects of inductive logic, North-Holland (Amsterdam, 1966).
R. Sikorski,Boolean Algebras, Springer (Berlin, 1964).
C. A. Rogers,Analytic Sets, Academic Press (New York, 1980).