Measures of noncompactness in modular spaces and fixed point theorems for multivalued nonexpansive mappings

Springer Science and Business Media LLC - Tập 23 - Trang 1-25 - 2021
T. Domínguez Benavides1, P. Lorenzo Ramírez1
1Departamento de Análisis Matemático, Universidad de Sevilla, Seville, Spain

Tóm tắt

This paper is devoted to state some fixed point results for multivalued mappings in modular vector spaces. For this purpose, we study the uniform noncompact convexity, a geometric property for modular spaces which is similar to nearly uniform convexity in the Banach spaces setting. Using this property, we state several new fixed point theorems for multivalued nonexpansive mappings in modular spaces.

Tài liệu tham khảo

Abdou, A.A.N., Khamsi, M.A.: Fixed point theorems in modular vector spaces. J. Nonlinear Sci. Appl. 10(8), 4046–4057 (2017) Ayerbe, J.M., Domínguez Benavides, T., López Acedo, G.: Measures of Noncompactness in Metric Fixed Point Theory. Birkhäuser (1997) Bachar, M., Bounkhel, M., Khamsi, M.A.: Uniform Convexity in lp(.). J. Nonlinear Sci. Appl. 10, 5292–5299 (2017) Bachar, M., Mendez, O., Bounkhel, M.: Modular uniform convexity of Lebesgue spaces of variable integrability. Symmetry 10(12), 708 (2018). https://doi.org/10.3390/sym10120708 Browder, F.E.: Fixed point theorems for noncompact mappings in Hilbert spaces. Proc. Nat. Acad. Sci. USA 43, 1272–1276 (1965) Browder, F.E.: Nonexpansive nonlinear opemtors in a Banach space. Proc. Nat. Acad. Sci. USA 54, 1041–1044 (1965) Dhompongsa, S., Domínguez Benavides, T., Kaewcharoen, A., Panyanak, B.: Fixed point theorems for multivalued mappings in modular function spaces. Sci. Math. Jpn. 63(2), 161–169 (2006) Domínguez Benavides, T.: Geometric properties of Banach spaces and metric fixed point theory. Extracta Math. 17, 331–349 (2002) Domínguez Benavides, T., Gavira, B.: Does Kirk’s theorem holds for multivalued nonexpansive mappings? Fixed Point Theory Appl. 2010, 546761 (2010). https://doi.org/10.1155/2010/546761 Domínguez Benavides, T., Japón, M.: Fixed point properties and reflexivity in variable Lebesgue spaces. J. Funct. Anal. 280(6), 108896 (2021). https://doi.org/10.1016/j.jfa.2020.108896 Domínguez Benavides, T., Khamsi, M.A., Samadi, S.: Asymptotically regular mappings in modular function spaces. Sci. Math. Jpn. 53(2), 295–304 (2001) Domínguez Benavides, T., Lorenzo, P.: Fixed point theorems for multivalued nonexpansive mappings without uniform convexity. Abs. Appl. Anal. 6(2003), 375–386 (2003) Domínguez Benavides, T., Lorenzo, P.: Asymptotic centers and fixed points for multivalued nonexpansive mappings. Ann. Univ. Mariae Curie-Sklodowska Sect. A 58, 37–45 (2004) Domínguez Benavides, T., Moshtaghioun, S.M., Sadeghi Hafshejani, A.: Fixed points for several classes of mappings in Variable Lebesgue Spaces. Optimization. https://doi.org/10.1080/02331934.2019.1711086 Goebel, K.: On a fixed point theorem for multivalued nonexpansive mappings. Ann. Univ. Marie Curie-Sklodowska 29, 70–72 (1975) Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press (1990) Goebel, K., Sekowski, T.: The modulus of noncompact convexity. Ann. Univ. Mariae Curie-Sklodowska Sect. A 38, 41–48 (1984) Göhde, D.: Zum Prinzip der kontraktiven Abbildung. Math. Nach. 30, 251–258 (1965) Hu, S., Papageorgiou, N.: Handbook of Multivalued Analysis, vol. 1. Kluwer Academic Publishers, Dordrecht (1997) Kamińska, A.: On unifrom convexity of Orlicz spaces. Nederl. Akad. Wetensch. Indag. Math. 44(1), 27–36 (1982) Khamsi, M.A., Kozlowski, W.M.: Fixed Point Theory in Modular Function Spaces. Birkäuser, Basel (2015) Khamsi, M.A., Kozlowski, W.M., Reich, S.: Fixed point theory in modular function spaces. Nonlinear Anal. 14(11), 935–953 (1990) Kozlowski, W.M.: Modular function spaces. Dekker, New York (1988) Kirk, W.A.: A fixed point theorem for mappings which do not increase the distances. Am. Math. Mon. 72, 1004–1006 (1965) Kirk, W.A., Massa, S.: Remarks on asymptotic and Chebyshev centers. Houston J. Math. 16(3), 357–364 (1990) Kuczumov, T., Prus, S.: Asymptotic centers and fixed points of multivalued nonexpansive mappings. Houst. J. Math. 16, 465–468 (1990) Lim, T.C.: A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach space. Bull. Am. Math. Soc. 80, 1123–1126 (1974) Musielak, J., Orlicz, W.: On modular spaces. Studia Math. 18, 591–597 (1959) Nakano, H.: Modulared Semi-ordered Linear Spaces. Maruzen Co., Tokyo (1950) Nakano, H.: Topology of Linear Topological Spaces. Maruzen Co. Ltd, Tokyo (1951) Orlicz, W.: Über konjugierte Exponentenfolgen. Studia Math. 3, 200–212 (1931) Reich, S.: Some fixed point problems. Atti Accad. Naz. Lincei 57, 194–198 (1974) Reich, S.: Approximate selections, best approximations, fixed points, and invariant sets. J. Math. Anal. Appl. 62, 104–113 (1978) Ru̇žička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748. Springer, Berlin (2000)