Measurements on the reality of the wavefunction

Nature Physics - Tập 11 Số 3 - Trang 249-254 - 2015
Martin Ringbauer1, B. Duffus1, Cyril Branciard1, Eric G. Cavalcanti2, A. G. White3, Alessandro Fedrizzi3
1Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
2School of Physics, University of Sydney, Sydney, New South Wales 2016, Australia
3Centre for Quantum Computer and Communication Technology, School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mermin, N. D. Is the moon there when nobody looks? Reality and the quantum theory. Phys. Today 38(4), 38–47 (1985).

Mermin, N. D. QBism puts the scientist back into science. Nature 507, 421–423 (2014).

Caves, C. M., Fuchs, C. A. & Schack, R. Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002).

Fuchs, C. A. QBism, the Perimeter of Quantum Bayesianism. Preprint at http://arXiv.org/abs/1003.5209 (2010).

Spekkens, R. Evidence for the epistemic view of quantum states: A toy theory. Phys. Rev. A 75, 032110 (2007).

Leifer, M. S. Is the quantum state real? An extended review of ψ-ontology theorems. Quanta 3, 67–155 (2014).

Harrigan, N. & Spekkens, R. W. Einstein, incompleteness, and the epistemic view of quantum states. Found. Phys. 40, 125–157 (2010).

Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).

Bell, J. S. On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964).

Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).

Pusey, M. F., Barrett, J. & Rudolph, T. On the reality of the quantum state. Nature Phys. 8, 476–479 (2012).

Colbeck, R. & Renner, R. Is a system’s wave function in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108, 150402 (2012).

Hardy, L. Are quantum states real? Int. J. Mod. Phys. B 27, 1345012 (2013).

Patra, M. K., Pironio, S. & Massar, S. No-go theorems for ψ-epistemic models based on a continuity assumption. Phys. Rev. Lett. 111, 090402 (2013).

Aaronson, S., Bouland, A., Chua, L. & Lowther, G. ψ-epistemic theories: The role of symmetry. Phys. Rev. A 88, 032111 (2013).

Colbeck, R. & Renner, R. A system’s wave function is uniquely determined by its underlying physical state. Preprint at http://arxiv.org/abs/1312.7353 (2013).

Emerson, J., Serbin, D., Sutherland, C. & Veitch, V. The whole is greater than the sum of the parts: On the possibility of purely statistical interpretations of quantum theory. Preprint at http://arxiv.org/abs/1312.1345 (2013).

Lewis, P. G., Jennings, D., Barrett, J. & Rudolph, T. Distinct quantum states can be compatible with a single state of reality. Phys. Rev. Lett. 109, 150404 (2012).

Barrett, J., Cavalcanti, E. G., Lal, R. & Maroney, O. J. E. No ψ-epistemic model can fully explain the indistinguishability of quantum states. Phys. Rev. Lett. 112, 250403 (2014).

Leifer, M. S. ψ-epistemic models are exponentially bad at explaining the distinguishability of quantum states. Phys. Rev. Lett. 112, 160404 (2014).

Branciard, C. How ψ-epistemic models fail at explaining the indistinguishability of quantum states. Phys. Rev. Lett. 113, 020409 (2014).

Nigg, D. et al. Can different quantum state vectors correspond to the same physical state? An experimental test. Preprint at http://arxiv.org/abs/1211.0942 (2012).

Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).

Patra, M. K. et al. Experimental refutation of a class of ψ-epistemic models. Phys. Rev. A 88, 032112 (2013).

Larsson, J-Å. Loopholes in Bell inequality tests of local realism. J. Phys. A 47, 424003 (2014).

Fujiwara, M., Takeoka, M., Mizuno, J. & Sasaki, M. Exceeding the classical capacity limit in a quantum optical channel. Phys. Rev. Lett. 90, 167906 (2003).

Bohm, D. A suggested interpretation of the quantum theory in terms of “Hidden” variables. I. Phys. Rev. 85, 166–179 (1952).

Everett, H. III “Relative State” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957).

James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 52312 (2001).

Fedrizzi, A., Herbst, T., Poppe, A., Jennewein, T. & Zeilinger, A. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express 15, 15377 (2007).