Measurements on the reality of the wavefunction
Tóm tắt
Từ khóa
Tài liệu tham khảo
Mermin, N. D. Is the moon there when nobody looks? Reality and the quantum theory. Phys. Today 38(4), 38–47 (1985).
Caves, C. M., Fuchs, C. A. & Schack, R. Quantum probabilities as Bayesian probabilities. Phys. Rev. A 65, 022305 (2002).
Fuchs, C. A. QBism, the Perimeter of Quantum Bayesianism. Preprint at http://arXiv.org/abs/1003.5209 (2010).
Spekkens, R. Evidence for the epistemic view of quantum states: A toy theory. Phys. Rev. A 75, 032110 (2007).
Leifer, M. S. Is the quantum state real? An extended review of ψ-ontology theorems. Quanta 3, 67–155 (2014).
Harrigan, N. & Spekkens, R. W. Einstein, incompleteness, and the epistemic view of quantum states. Found. Phys. 40, 125–157 (2010).
Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935).
Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V. & Wehner, S. Bell nonlocality. Rev. Mod. Phys. 86, 419–478 (2014).
Pusey, M. F., Barrett, J. & Rudolph, T. On the reality of the quantum state. Nature Phys. 8, 476–479 (2012).
Colbeck, R. & Renner, R. Is a system’s wave function in one-to-one correspondence with its elements of reality? Phys. Rev. Lett. 108, 150402 (2012).
Patra, M. K., Pironio, S. & Massar, S. No-go theorems for ψ-epistemic models based on a continuity assumption. Phys. Rev. Lett. 111, 090402 (2013).
Aaronson, S., Bouland, A., Chua, L. & Lowther, G. ψ-epistemic theories: The role of symmetry. Phys. Rev. A 88, 032111 (2013).
Colbeck, R. & Renner, R. A system’s wave function is uniquely determined by its underlying physical state. Preprint at http://arxiv.org/abs/1312.7353 (2013).
Emerson, J., Serbin, D., Sutherland, C. & Veitch, V. The whole is greater than the sum of the parts: On the possibility of purely statistical interpretations of quantum theory. Preprint at http://arxiv.org/abs/1312.1345 (2013).
Lewis, P. G., Jennings, D., Barrett, J. & Rudolph, T. Distinct quantum states can be compatible with a single state of reality. Phys. Rev. Lett. 109, 150404 (2012).
Barrett, J., Cavalcanti, E. G., Lal, R. & Maroney, O. J. E. No ψ-epistemic model can fully explain the indistinguishability of quantum states. Phys. Rev. Lett. 112, 250403 (2014).
Leifer, M. S. ψ-epistemic models are exponentially bad at explaining the distinguishability of quantum states. Phys. Rev. Lett. 112, 160404 (2014).
Branciard, C. How ψ-epistemic models fail at explaining the indistinguishability of quantum states. Phys. Rev. Lett. 113, 020409 (2014).
Nigg, D. et al. Can different quantum state vectors correspond to the same physical state? An experimental test. Preprint at http://arxiv.org/abs/1211.0942 (2012).
Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998).
Patra, M. K. et al. Experimental refutation of a class of ψ-epistemic models. Phys. Rev. A 88, 032112 (2013).
Fujiwara, M., Takeoka, M., Mizuno, J. & Sasaki, M. Exceeding the classical capacity limit in a quantum optical channel. Phys. Rev. Lett. 90, 167906 (2003).
Bohm, D. A suggested interpretation of the quantum theory in terms of “Hidden” variables. I. Phys. Rev. 85, 166–179 (1952).
Everett, H. III “Relative State” formulation of quantum mechanics. Rev. Mod. Phys. 29, 454–462 (1957).
James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 52312 (2001).