Measurements on flame structure of bluff body and swirl stabilized premixed flames close to blow-off

Experimental Thermal and Fluid Science - Tập 104 - Trang 15-25 - 2019
Weijie Zhang1, Jinhua Wang1, Wenjun Lin1, Shilong Guo1, Meng Zhang1, Guohua Li2, Jingfeng Ye2, Zuohua Huang1
1State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi'an 710024, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Huang, 2009, Dynamics and stability of lean-premixed swirl-stabilized combustion, Prog. Energy Combust. Sci., 35, 293, 10.1016/j.pecs.2009.01.002

Nemitallah, 2018, Review of novel combustion techniques for clean power production in gas turbines, Energy Fuels, 32, 979, 10.1021/acs.energyfuels.7b03607

Gao, 2013, NOx formation in hydrogen–methane turbulent diffusion flame under the moderate or intense low-oxygen dilution conditions, Energy, 59, 559, 10.1016/j.energy.2013.07.022

Taamallah, 2015, Fuel flexibility, stability and emissions in premixed hydrogen-rich gas turbine combustion: technology, fundamentals, and numerical simulations, Appl. Energy, 154, 1020, 10.1016/j.apenergy.2015.04.044

Zeldvich, 1946, The oxidation of nitrogen in combustion and explosions, J. Acta Physicochim., 21, 577

Shanbhogue, 2009, Lean blowoff of bluff body stabilized flames: scaling and dynamics, Prog. Energy Combust. Sci., 35, 98, 10.1016/j.pecs.2008.07.003

Chaudhuri, 2010, Blowoff dynamics of bluff body stabilized turbulent premixed flames, Combust. Flame, 157, 790, 10.1016/j.combustflame.2009.10.020

Chowdhury, 2018, Effects of free stream flow turbulence on blowoff characteristics of bluff-body stabilized premixed flames, Combust. Flame, 190, 302, 10.1016/j.combustflame.2017.12.002

Xiouris, 2011, An experimental investigation of the interaction of swirl flow with partially premixed disk stabilized propane flames, Exp. Therm Fluid Sci., 35, 1055, 10.1016/j.expthermflusci.2011.02.008

Longwell, 1953, Flame stability in bluff body recirculation zones, Ind. Eng. Chem., 45, 1629, 10.1021/ie50524a019

Zukoski, 1954

Yamaguchi, 1985, Structure and blow-off mechanism of rod-stabilized premixed flame, Combust. Flame, 62, 31, 10.1016/0010-2180(85)90091-4

Pan, 1991, Aerodynamics of bluff body stabilized confined turbulent premixed flames, J. Eng. Gas Turbines Power, 114, 783, 10.1115/1.2906657

Dawson, 2011, Visualization of blow-off events in bluff-body stabilized turbulent premixed flames, Proc. Combust. Inst., 33, 1559, 10.1016/j.proci.2010.05.044

Kariuki, 2012, Measurements in turbulent premixed bluff body flames close to blow-off, Combust. Flame, 159, 2589, 10.1016/j.combustflame.2012.01.005

Kariuki, 2015, Heat release imaging in turbulent premixed methane–air flames close to blow-off, Proc. Combust. Inst., 35, 1443, 10.1016/j.proci.2014.05.144

Cavaliere, 2013, A comparison of the blow-off behaviour of swirl-stabilized premixed, non-premixed and spray flames, Flow, Turbul. Combust., 91, 347, 10.1007/s10494-013-9470-z

Stöhr, 2011, Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor, Proc. Combust. Inst., 33, 2953, 10.1016/j.proci.2010.06.103

Sidey, 2018, Stabilisation of swirling dual-fuel flames, Exp. Therm. Fluid Sci., 95, 65, 10.1016/j.expthermflusci.2018.02.007

J. Allen, B.T. Fisher, A.K. Agrawal, Effect of porous insert on flame dynamics in a lean premixed swirl-stabilized combustor using planar laser-induced flueorescence, in: 54th AIAA Aerospace Sciences Meeting, San Diego, California, USA, 2016, 4–8 January.

Ahmed, 1997, Three component velocity measurements of an isothermal confined swirling flow, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng., 211, 113, 10.1243/0954410971532541

G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr. GRI-Mech 3.0. Chicago, IL: Gas Research Inst., 2000. Available from <http://www.me.berkeley.edu/gri_mech/>.

Dinkelacker, 2011, Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach, Combust. Flame, 158, 1742, 10.1016/j.combustflame.2010.12.003

Law, 2000, Structure, aerodynamics, and geometry of premixed flamelets, Prog. Energy Combust. Sci., 26, 459, 10.1016/S0360-1285(00)00018-6

Zhang, 2018, Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept, Combust. Sci. Technol., 11, 1

Zhang, 2014, Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames, Exp. Therm Fluid Sci., 52, 288, 10.1016/j.expthermflusci.2013.10.002

Gaydon, 1979

Lee, 2003, Experimental diagnostics for the study of combustion instabilities in lean premixed combustors, J. Propul. Power, 19, 735, 10.2514/2.6191

Khalil, 2011, Swirling distributed combustion for clean energy conversion in gas turbine applications, Appl. Energy, 88, 3685, 10.1016/j.apenergy.2011.03.048

Pretzier, 1991, A new method for numerical Abel-Inversion, Zeitschrift Für Naturforschung A., 46, 639, 10.1515/zna-1991-0715

Otsu, 1979, A threshold selection method from gray-level histograms, IEEE Trans. Syst., Man, Cybernet., 9, 62, 10.1109/TSMC.1979.4310076

Roy Chowdhury, 2017, Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames, Combust. Flame, 178, 311, 10.1016/j.combustflame.2016.12.019

Kobayashi, 2005, Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Inst., 30, 827, 10.1016/j.proci.2004.08.098

Wang, 2015, Burning velocity and statistical flame front structure of turbulent premixed flames at high pressure up to 1.0 MPa, Exp. Therm. Fluid Sci., 68, 196, 10.1016/j.expthermflusci.2015.04.015

Tamadonfar, 2016, Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners, Exp. Therm. Fluid Sci., 73, 42, 10.1016/j.expthermflusci.2015.09.006

Tamadonfar, 2015, Effects of mixture composition and turbulence intensity on flame front structure and burning velocities of premixed turbulent hydrocarbon/air Bunsen flames, Combust. Flame, 162, 4417, 10.1016/j.combustflame.2015.08.009

Filatyev, 2005, Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities, Combust. Flame, 141, 1, 10.1016/j.combustflame.2004.07.010

Damköhler, 1940, Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen, Berichte der Bunsengesellschaft für physikalische Chemie., 46, 601

Driscoll, 2008, Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities, Prog. Energy Combust. Sci., 34, 91, 10.1016/j.pecs.2007.04.002

Hu, 2009, Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames, Int. J. Hydrogen Energy, 34, 4876, 10.1016/j.ijhydene.2009.03.058

Bell, 2007, Numerical simulation of a laboratory-scale turbulent slot flame, Proc. Combust. Inst., 31, 1299, 10.1016/j.proci.2006.07.186

Zhang, 2015, Estimation of 3D flame surface density and global fuel consumption rate from 2D PLIF images of turbulent premixed flame, Combust. Flame, 162, 2087, 10.1016/j.combustflame.2015.01.007

Zhang, 2011, Strain characteristics near the flame attachment point in a swirling flow, Combust. Sci. Technol., 183, 665, 10.1080/00102202.2010.537288