Measurements of the Polarization Properties of Foam Materials Useful for mm-wave Polarimeters Windows

G. Coppi1, T. Marchetti1, P. de Bernardis1, S. Masi1
1Dipartimento di Fisica, Universitá di Roma La Sapienza, Rome, Italy

Tóm tắt

We have measured in the W-band, using a custom setup, the absorption and polarization properties in transmission of foam materials (elyfoamⓇ, styrodurⓇ, plastazoteⓇ, and propozoteⓇ) useful for windows of mm-wave photometers and polarimeters. The levels of the induced polarization degree and of the absorption are very small, and difficult to measure accurately. We find induced polarization degrees lower than 0.6 %, and transmissions higher than 97 % for few centimeter thicknesses of our samples. We describe the instrumental setup, the measurements, and the impact of our findings in the design of precision polarimeters for Cosmic Microwave Background measurements. All these materials, with the exception of black plastazoteⓇ, feature transmissions higher than 99 %, and induced polarizations lower than ∼1 % for sample thicknesses around 2–3 cm.

Tài liệu tham khảo

Seljak, U., & Zaldarriaga, M. 1997, Phys. Rev. Lett., 78, 2054. Kamionkowski, M., Kosowsky, A., & Stebbins, A. 1997, Phys. Rev. Lett., 78, 2058. Essinger-Hileman, T., et al., “The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers”, 2010, Proceedings of the Thirteenth International Conference on Low-Temperature Detectors, arXiv:astro-ph/1008. 3915. Henderson S. W., et al., “Advanced ACTPol Cryogenic Detector Arrays and Readout”, 2015, submitted to JLTP, arXiv:Astro-ph/1510.02809. BICEP collaboration, Ade P.A.R: et al., “BICEP2 II: Experiment and Three-Year Data Set”, 2014, arXiv:astro-ph/1403.4302. Ahmed Z., et al., “BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization”, 2014, Proceedings of the SPIE, 9153, 91531N, arXiv:astro-ph/1407.5928. Essinger-Hileman T., et al., “CLASS: The Cosmology Large Angular Scale Surveyor”, 2014, Proceedings of SPIE 9153, 91531I, arXiv:astrto-ph/1408. 4788. Reichborn-Kjennerud, B. et al., “EBEX: A balloon-borne CMB polarization experiment”, Proc.SPIE Int.Soc.Opt.Eng. 7741, 1C, (2010) arXiv: astro-ph/1007.3672. Ade P.A.R., et al. “BICEP2/Keck Array. IV. Optical Characterization and Performance of the BICEP2 and Keck Array Experiments”, 2015, The Astrophysical Journal, 806, 206. Aiola, S. et al., “The Large-Scale Polarization Explorer (LSPE)”, 2012, Proceedings of the SPIE, Volume 8446, 84467A. Arnold K., et al., “The bolometric focal plane array of the Polarbear CMB experiment”, 2012, Proceedings of SPIE Volume 8452, arXiv: astro-ph/1210.7877. Filippini, J.P. et al., “SPIDER: a balloon-borne CMB polarimeter for large angular scales”, SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V (2011), arXiv:astro-ph/1106. 2158. Austermann J. E., et al. “SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope”, 2012, Proc. SPIE 8452, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, 84520E. arXiv:Astro-ph/1210.4970. Tran H., Lee A., Hanany S., Milligan M., Renbarger T., 2008, “Comparison of the crossed and the Gregorian Mizuguchi-Dragone for wide-field millimeter-wave astronomy”, Appl Opt. 47, 103. de Bernardis, P., et al., “SWIPE: a bolometric polarimeter for the Large-Scale Polarization Explorer”, 2012, Proceedings of the SPIE, Volume 8452, 84523F, arXiv:astro-ph/1208.0282. A. A. Fraisse, P. A. R. Ade, M. Amiri, et al., SPIDER: Probing the Early Universe with a Suborbital Polarimeter, arXiv:astro-ph/1106-3087, (2011). Koller, D., Ediss, G. A., Mihaly, L., Carr, G.L., 2006, “Infrared Measurements of Possible IR Filter Materials”, International Journal of Infrared and Millimeter Waves, 27:835-846. Runyan, M. C., Ade, P. A. R., Bhatia, R. S., et al. 2003, “ACBAR: The Arcminute Cosmology Bolometer Array Receiver ”, Astrophys. J. Suppl., 149, 265.