Measurement of regional pulse wave velocity using very high frame rate ultrasound
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ibanez B, Badimon JJ, Garcia MJ. Diagnosis of arteriosclerosis by imaging. Am J Med. 2009;122:S15–25.
Wendelhag I, Wiklund O, Wikstrand J. On quantifying plaque size and intima-media thickness in carotid and femoral arteries: comments on results from a prospective ultrasound study in patients with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 1996;16:843–50.
Liang Q, Wendelhag I, Wilstrand J, Gustavsson T. A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Trans Med Imaging. 2000;19:127–42.
Klingensmith JD, Shekhar R, Vince DG. Evaluation of three-dimensional segmentation algorithms for the identification of luminal and media-adventitial borders in intravascular ultrasound images. IEEE Trans Med Imaging. 2000;19:996–1011.
Meinders JM, Brands PJ, Willigers JM, Kornet L, Hoeks APG. Assessment of the spatial homogeneity of artery dimension parameters with high frame rate 2-D B-mode. Ultrasound Med Biol. 2001;27:785–94.
Kanai H, Hasegawa H, Ichiki M, Tezuka F, Koiwa Y. Elasticity imaging of atheroma with transcutaneous ultrasound: preliminary study. Circulation. 2003;107:3018–21.
Maurice J, Ohayon J, Frétigny Y, Bertrand M, Soulez G, Cloutier G. Noninvasive vascular elastography: theoretical framework. IEEE Trans Med Imaging. 2004;23:164–80.
Tsuzuki K, Hasegawa H, Ichiki M, Tezuka f, Kanai H. Optimal region-of-interest settings for tissue characterization based on ultrasonic elasticity imaging. Ultrasound Med Biol. 2008;34:573–85.
Ikeshita K, Hasegawa H, Kanai H. Flow-mediated change in viscoelastic property of radial arterial wall measured by 22-MHz ultrasound. Jpn J Appl Phys. 2009;48:07GJ10-1–5.
Ikeshita K, Hasegawa H, Kanai H. Noninvasive measurement of transient change in viscoelasticity due to flow-mediated dilation using automated detection of arterial wall boundaries. Jpn J Appl Phys. 2011;50:07HF08-1–7.
Hasegawa H, Kanai H. Reduction of influence of variation in center frequencies of RF echoes on estimation of artery-wall strain. IEEE Trans Ultrason Ferroelectr Freq Control. 2008;55:1921–34.
Tokita A, Ishigaki Y, Okimoto H, Hasegawa H, Koiwa Y, Kato M, Ishihara H, Hinokio Y, Katagiri H, Kanai H, Oka Y. Carotid arterial elasticity is a sensitive atherosclerosis value reflecting visceral fat accumulation in obese subjects. Atherosclerosis 2009;206:168–72.
Halloc P. Arterial elasticity in man in relation to age as evaluated by pulse wave velocity method. Arch Int Med. 1934;54:770–98.
Laurent S, Cockcroft J, Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoilos C, Wilkinson I, Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.
Imura T, Yamamoto K, Kanamori K, Mikami T, Yasuda H. Non-invasive ultrasonic measurement of the elastic properties of the human abdominal aorta. Cardiovasc Res. 1986;20:208–14.
Kanai H, Kawabe K, Takano M, Murata R, Chubachi N, Koiwa Y. New method for evaluating local pulse wave velocity by measuring vibrations on arterial wall. Electron Lett. 1994;30:534–6.
Kanai H, Sato M, Koiwa Y, Chubachi N. Transcutaneous measurement and spectrum analysis of heart wall vibrations. IEEE Trans Ultrason Ferroelectr Freq Control. 1996;43:791–810.
Hasegawa H, Kanai H. Simultaneous imaging of artery-wall strain and blood flow by high frame rate acquisition of RF signals. IEEE Trans UFFC. 2008;55:2626–39.
Hasegawa H, Kanai H. High-frame-rate echocardiography using diverging transmit beams and parallel receive beamforming. J Med Ultrason. 2011;38:129–40.
Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR, Webb DJ. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens. 1998;16:2079–84.
Rogers WJ, Hu YL, Coast D, Vido DA, Kramer CM, Pyerits RE, Reichek N. Age-associated changes in regional aortic pulse wave velocity. J Am Coll Cardiol. 2001;38:1123–9.
Nürnberger J, Saez AO, Dammer S, Mitchell A, Wenzel RR, Philipp T, Schäfers RF. Left ventricular ejection time: a potential determinant of pulse wave velocity in young, healthy males. J Hypertens. 2003;21:2125–32.
Iketani T, Iketani Y, Takazawa K, Yamashina A. The influence of the peripheral reflection wave on left ventricular hypertrophy in patients with essential hypertension. Hypertens Res. 2000;23:451–8.
Hayashi T, Nakayama Y, Tsumura K, Yoshimaru K, Ueda H. Reflection in the arterial system and the risk of coronary heart disease. Am J Hypertens. 2002;15:405–9.
London GM, Blacher J, Pannier B, Guérin AP, Marchais SJ, Safar ME. Arterial wave reflections and survival in end-stage renal failure. Hypertension. 2001;38:434–8.
Barnett GO, Mallos AJ, Shapiro A. Relationship of aortic pressure and diameter in the dog. J Appl Physiol. 1961;16:545–8.
Patel DJ, de Fretias FM, Greenfield JC Jr, Fly DL. Relationship of radius to pressure along the aorta in living dogs. J Appl Physiol. 1963;18:1111–7.
Sugawara M, Furuhata H, Kikkawa S, et al. Development of a non-invasive method of measuring blood pressure wave. Jpn J Med Electron Biol Eng. 1983;21S:429.
Newman DL, Gosling RG, Bowden NLR. Changes in aortic distensibility and area ratio with the development of atherosclerosis. Atherosclerosis. 1971;14:231–40.
Hudetz AG, Mark G, Kovach AGB, et al. Biomechanical properties of normal and fibrosclerotic human cerebral arteries. Atherosclerosis. 1981;39:353–65.
Young JT, Vaishnav RS, Patel DJ. Nonlinear elastic properties of canine arterial segments. J Biomech. 1977;10:549–59.