Measurement of Individual Red Blood Cell Motions Under High Hematocrit Conditions Using a Confocal Micro-PTV System

Rui Lima1,2,3, Takuji Ishikawa2, Yohsuke Imai2, Motohiro Takeda4, Satoshi Wada5, Takami Yamaguchi6
1CEFT, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
2Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan
3Department of Mechanical Technology, ESTiG, Braganca Polytechnic, Braganca, Portugal
4Division of Surgical Oncology, Graduate School of Medicine, Tohoku University, Sendai, Japan
5Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
6Department of Biomedical Engineering, Graduate Biomedical School of Engineering, Tohoku University, Sendai, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramoff, M., Magelhaes, P., Ram, S. 2004 Image Processing with Image J, Biophotonics Int. 11: 36-42.

Baker M., Wayland H. 1974 On-line volume flow rate and velocity profile measurement for blood in microvessels. Microvasc. Res. 7: 131-143.

Born G., Melling A., Whitelaw J. 1978 Laser Doppler microscope for blood velocity measurement. Biorheology 15: 163-172.

Caro, C., T. Pedley, R. Schroter, and W. Seed (1978). The Mechanics of the Circulation. Oxford: Oxford University Press

Chien, S. 1970 Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168: 977-979.

Conchello J., Lichtman, J. 2005 Optical sectioning microscopy. Nat. Methods 2: 920–931.

Fahraeus, R., Lindqvist, T. 1931 The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96: 562-568.

Fischer T., Stohr-Lissen M, Schmid-Schonbein, H. 1978 The red cell as a fluid droplet: tank tread-like motion of the human erythrocyte membrane in shear flow. Science 202: 894-896.

Fujiwara, H., Ishikawa T., Lima, R., Matsuki, N., Imai, Y., Kaji, H., Nishizawa, M., Yamaguchi, T. 2009 Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. J. Biomech., 42: 838-843.

Gaehtgens P., Meiselman H., Wayland H. 1970 Velocity profiles of human blood at normal and reduced hematocrit in glass tubes up to 130 μ diameter. Microvasc. Res. 2: 13-23.

Goldsmith H. 1971 Red cell motions and wall interactions in tube flow, Fed. Proc. 30: 1578-1588.

Goldsmith H. 1971 Deformation of human red cells in tube flow, Biorheology 7: 235-242.

Goldsmith, H., Marlow, J. 1979 Flow behavior of erythrocytes. II. Particles motions in concentrated suspensions of ghost cells, J. Colloid Interface Sci. 71: 383-407.

Goldsmith, H., Turitto, V. 1986 Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 55: 415–435.

Inoue, S., and T. Inoue (2002) Direct-view high-speed confocal scanner: the CSU-10. In: Matsumoto B (ed.), Cell Biological Applications of Confocal Microscopy. San Diego: Academic Press, pp. 87–127.

Ishikawa, T. and Pedley, T. 2007 Diffusion of swimming model micro-organisms in a semi-dilute suspensions. J. Fluid Mech., 588: 437-462.

Kinoshita, H., Kaneda, S., Fujii, T.,Oshima, M. 2007 Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab Chip 7: 338-346.

Lima, R. Analysis of the blood flow behavior through microchannels by a confocal micro-PIV/PTV system. Ph.D. Thesis, Tohoku University, Japan, 2007.

Lima, R., Ishikawa T., Imai, Y., Takeda, M., Wada, S., Yamaguchi, T. 2008 Radial dispersion of red blood cells in blood flowing through glass capillaries: role of hematocrit and geometry. J. Biomech. 41: 2188-2196.

Lima, R., Wada, S., Takeda, M., Tsubota, K., Yamaguchi, T. 2007 In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. J. Biomech. 40: 2752-2757.

Lima, R., Wada, S., Tanaka, S., Takeda, M., Ishikawa, T., Tsubota, K., Imai, Y., Yamaguchi, T. 2008 In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed. Microdevices, 10: 153-167.

Lima, R., Wada, S., Tsubota, K.,Yamaguchi, T. 2006 Confocal micro-PIV measurements of three dimensional profiles of cell suspension flow in a square microchannel. Meas. Sci. Technol. 17: 797-808.

Meijering E., Smal I., Danuser G. 2006 Tracking in Molecular Bioimaging, IEEE Signal Process. Mag., 23: 46-53.

Meinhart C, Wereley S., Gray H. 2000 Volume illumination for two-dimensional particle image velocimetry. Meas. Sci. Technol. 11: 809-814.

Meinhart C, Wereley S, Santiago J. 1999 PIV measurements of a microchannel flow. Exp. Fluids 27: 414-419.

Miyazaki, H. and Yamaguchi, T. 2003 Formation and destruction of primary thrombi under the influence of blood flow and von Willebrand factor analysed by a D. E. M., Biorheology 40: 265-272.

Nash, G., Meiselman, H. 1983 Red cell and ghost viscoelasticity. Effects of hemoglobin concentration and in vivo aging. Biophys. J. 43: 63-73.

Park J, Choi C, and Kihm K 2004 Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM). Exp. Fluids 37: 105-119.

Parthasarathi A., Japee S., Pittman R. 1999 Determination of red blood cell velocity by video shuttering and image analysis. Ann. Biomed. Eng. 27: 313-325.

Schmid-Schonbein, H., Wells, R. 1969 Fluid drop-like transition of erythrocytes under shear. Science 165: 288-291.

Shiga, T., Maeda N., Kon K. 1990 Erythrocyte rheology. Crit. Rev. Oncol. Hematol. 10: 9-48.

Sugii Y, Okuda R, Okamoto K, Madarame H 2005 Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique. Meas. Sci. Technol. 16: 1126-1130.

Tanaani T, Otsuki S, Tomosada N, Kosugi Y, Shimizu M., Ishida H. 2002 High-speed 1-frame/ms scanning confocal microscope with a microlens and Nipkow disks. Appl. Opt. 41: 4704-4708.

Tsubota, K., Wada, S., Yamaguchi, T. 2006 Particle method for computer simulation of red blood cell motion in blood flow. Comput. Methods Programs Biomed. 83: 139-146.

Uijttewaal W., Nijhof E., Heethaar R. 1994 Lateral migration of blood cells and microspheres in two-dimensional Poiseuille flow: a laser Doppler study. J. Biomech. 27: 35-42.

Vennemann P., K. Kiger, R. Lindken, B. Groenendijk, S. Stekelenburg-de Vos, T. Hagen, N. Ursem, R. Poelmann, J. Westerweel, B. Hierk 2006 In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J. Biomech. 39: 1191-1200.

Wootton, D., Ku D. 1999 Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1: 299-329.

Yamaguchi, T., Ishikawa, T., Tsubota, K., Imai, Y., Nakamura M., Fukui T. 2006 Computational blood flow analysis—new trends and methods. J. Biomech. Sci. Eng. 1: 29-50.