Measurement of Cell Volume Changes by Fluorescence Self-Quenching

Journal of Fluorescence - Tập 12 - Trang 139-145 - 2002
Steffen Hamann1, Jens Folke Kiilgaard2, Thomas Litman1, Francisco J. Alvarez-Leefmans3,4, Benny R. Winther5, Thomas Zeuthen1
1Department of Medical Physiology, The Panum Institute, University of Copenhagen, Copenhagen N, Denmark
2Eye Pathology Institute, University of Copenhagen, Copenhagen Ø, Denmark
3Departmento de Farmacobiologia, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional, México
4Departemento de Neurobiologia, Instituto Nacional de Psiquiatria, México, México
5Department of Clinical Biochemistry, Glostrup Hospital, Glostrup, Denmark

Tóm tắt

At high concentrations, certain fluorophores undergo self-quenching, i.e., fluorescence intensity decreases with increasing fluorophore concentration. Accordingly, the self-quenching properties can be used for measuring water volume changes in lipid vesicles. In cells, quantitative determination of water transport using fluorescence self-quenching has been complicated by the requirement of relatively high (mM) and often toxic loading concentrations. Here we report a simple method that uses low (μM) loading concentrations of calcein-acetoxymethyl ester (calcein-AM) to obtain intracellular concentrations of the fluorophore calcein suitable for measurement of changes in cell water volume by self-quenching. The relationship between calcein fluorescence intensity, when excited at 490 nm (its excitation maximum), and calcein concentration was investigated in vitro and in various cultured cell types. The relationship was bell-shaped, with the negative slope in the concentration range where the fluorophore undergoes fluorescence self-quenching. In cultured retinal pigment epithelial cells, calcein fluorescence and extracellular osmolarity were linearly related. A 25-mOsm hypertonic challenge corresponded to a decrease in calcein fluorescence with high signal-to-noise ratio (>15). Similar results were obtained with the fluorophore BCECF when excited at its isosbestic wavelength (436 nm). The present results demonstrate the usefulness of fluorescence self-quenching to measure rapid changes in cell water volume.

Tài liệu tham khảo

B. Walter (1888) Ann. Phys. (Leipzig) 34, 316–326.

B. Walter (1888) Ann. Phys. (Leipzig) 34, 502–517.

B. Walter (1888) Ann. Phys. (Leipzig) 34, 518–533.

R. F. Chen and J. R. Knutson (1988) Anal. Biochem. 172, 61–77.

D. A. Kendall and R. C. MacDonald (1983) Anal. Biochem. 134, 26–33.

P. Y. Chen, D. Pearce, and A. S. Verkman (1988) Biochemistry 27, 5713–5718.

R. Ye, L.-B. Shi, W. I. Lencer, and A. S. Verkman (1989) J. Gen. Physiol. 93, 885–902.

Y. X. Wang, L. B. Shi, and A. S. Verkman (1991) Biochemistry 30, 2888–2894.

S. Jayaraman, Y. Song, and A. S. Verkman (2001) J. Gen. Physiol. 117, 423–430.

A. S. Verkman (2000) J. Membr. Biol. 173, 73–87.

F. J. Alvarez-Leefmans, J. Altamirano, and W. E. Crowe (1995) Meth. Neurosci. 27, 361–391.

W. E. Crowe, J. Altamirano, L. Huerto, and F. J. Alvarez-Leefmans (1995) Neuroscience 69, 283–296.

J. Farinas, M. Kneen, M. Moore, and A. S. Verkman (1997) J. Gen. Physiol. 110, 283–296.

F. Wehner, H. Sauer, and R. K. Kinne (1995) J. Gen. Physiol. 105, 507–535.

F. Wehner and H. Tinel (2000) Pflugers Arch. 441, 12–24.

F. Wehner and H. Tinel (1998) J. Physiol. 503 (Pt 1), 127–142.

R. Greger, D. Heitzmann, M. J. Hug, E. K. Hoffman, and M. Bleich (1999) Pflugers Arch. 438, 165–176.

X. M. Wang, P. I. Terasaki, G.W. Rankin, Jr., D. Chia, H. P. Zhong, and S. Hardy (1993) Hum. Immunol. 37, 264–270.

S. Muallem, B.-X. Zhang, P. A. Loessberg, and R. A. Star (1992) J. Biol. Chem. 267, 17658–17664.

S. P. Srinivas and J. A. Bonanno (1997) Am. J. Physiol. 272, C1405–C1414.