Measurement of 139La(p,x) cross sections from 35–60 MeV by stacked-target activation

Springer Science and Business Media LLC - Tập 56 - Trang 1-13 - 2020
Jonathan T. Morrell1, Andrew S. Voyles1, M. S. Basunia2, Jon C. Batchelder1, Eric F. Matthews1, Lee A. Bernstein1,2
1Department of Nuclear Engineering, University of California, Berkeley, USA
2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, USA

Tóm tắt

A stacked-target of natural lanthanum foils (99.9119% 139La) was irradiated using a 60 MeV proton beam at the LBNL 88-Inch Cyclotron. 139La(p,x) cross sections are reported between 35–60 MeV for nine product radionuclides. The primary motivation for this measurement was the need to quantify the production of 134Ce. As a positron-emitting analogue of the promising medical radionuclide 225Ac, 134Ce is desirable for in vivo applications of bio-distribution assays for this emerging radio-pharmaceutical. The results of this measurement were compared to the nuclear model codes TALYS, EMPIRE and ALICE (using default parameters), which showed significant deviation from the measured values.

Tài liệu tham khảo

F. Tárkányi, F. Ditrói, S. Takács, A. Hermanne, M. Baba, Appl. Radiat. Isot. 115, 262 (2016). https://doi.org/10.1016/j.apradiso.2016.07.003 L. Bernstein, D. Brown, A. Hurst, J. Kelly, F. Kondev, E. Mccutchan, C. Nesaraja, R. Slaybaugh, A. Sonzogni (2015) N. Otuka, E. Dupont, V. Semkova, B. Pritychenko, A. Blokhin, M. Aikawa, S. Babykina, M. Bossant, G. Chen, S. Dunaeva et al., Nucl. Data Sheets 120, 272 (2014). https://doi.org/10.1016/j.nds.2014.07.065 W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952). https://doi.org/10.1103/PhysRev.87.366 R.A. Boll, D. Malkemus, S. Mirzadeh, Appl. Radiat. Isot. 62, 667 (2005). https://doi.org/10.1016/j.apradiso.2004.12.003 A. Jain, R. Raut, J. Tuli, Nucl. Data Sheets 110, 1409 (2009). https://doi.org/10.1016/j.nds.2009.04.003 A.K. Jain, S. Singh, S. Kumar, J.K. Tuli, Nucl. Data Sheets 108, 883 (2007). https://doi.org/10.1016/j.nds.2007.03.002 F. Kondev, E. McCutchan, B. Singh, K. Banerjee, S. Bhattacharya, A. Chakraborty, S. Garg, N. Jovancevic, S. Kumar, S. Rathi et al., Nucl. Data Sheets 147, 382 (2018). https://doi.org/10.1016/j.nds.2018.01.002 M. Basunia, Nucl. Data Sheets 108, 633 (2007). https://doi.org/10.1016/j.nds.2007.02.002 J. Chen, F. Kondev, Nucl. Data Sheets 126, 373 (2015). https://doi.org/10.1016/j.nds.2015.05.003 D.A. Mulford, D.A. Scheinberg, J.G. Jurcic, J. Nucl. Med. 46, 199S (2005) C. Apostolidis, R. Molinet, G. Rasmussen, A. Morgenstern, Anal. Chem. 77, 6288 (2005). https://doi.org/10.1021/ac0580114 A. Sonzogni, Nucl. Data Sheets 103, 1 (2004). https://doi.org/10.1016/j.nds.2004.11.001 A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012). https://doi.org/10.1016/j.nds.2012.11.002 M. Herman, R. Capote, B. Carlson, P. Obložinský, M. Sin, A. Trkov, H. Wienke, V. Zerkin, Nucl. Data Sheets 108, 2655 (2007) (special Issue on Evaluations of Neutron Cross Sections) https://doi.org/10.1016/j.nds.2007.11.003 S.A. Graves, P.A. Ellison, T.E. Barnhart, H.F. Valdovinos, E.R. Birnbaum, F.M. Nortier, R.J. Nickles, J.W. Engle, Nucl. Instrum. Methods Phys. Res., Sect. B 386, 44 (2016). https://doi.org/10.1016/j.nimb.2016.09.018 A.S. Voyles, L.A. Bernstein, E.R. Birnbaum, J.W. Engle, S.A. Graves, T. Kawano, A.M. Lewis, F.M. Nortier, Nucl. Instrum. Methods Phys. Res., Sect. B 429, 53 (2018). https://doi.org/10.1016/j.nimb.2018.05.028 IAEA, International Atomic Energy Agency, Vienna, Austria (2001) J.F. Ziegler, M. Ziegler, J. Biersack, Nucl. Instrum. Methods Phys. Res., Sect. B: Beam Interact. Mater. Atoms 268, 1818 (2010) (19th International Conference on Ion Beam Analysis) https://doi.org/10.1016/j.nimb.2010.02.091 M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen (2010) M.K. Covo, R. Albright, B. Ninemire, M. Johnson, A. Hodgkinson, T. Loew, J. Benitez, D. Todd, D. Xie, T. Perry et al., Measurement 127, 580 (2018). https://doi.org/10.1016/j.measurement.2017.10.018 B. Singh, A.A. Rodionov, Y.L. Khazov, Nucl. Data Sheets 109, 517 (2008). https://doi.org/10.1016/j.nds.2008.02.001 J.T. Morrell, NPAT: Nuclear physics analysis tools (2019) (Online) https://jtmorrell.github.io/npat/build/html/index.html. Accessed 25 June 2019 M.R. Bhat, Evaluated Nuclear Structure Data File (ENSDF). In Nuclear Data for Science and Technology, edited by S.M. Qaim (Springer Berlin Heidelberg, Berlin, Heidelberg, 1992), pp. 817–821, ISBN 978-3-642-58113-7 G. Knoll, Radiation detection and measurement (Wiley, Hoboken, 1999) H. Bateman, Proc. Campridge Philos. Soc. 15, 423 (1910). https://doi.org/10.12691/ijp-4-2-3 A. Hermanne, A.V. Ignatyuk, R. Capote, B.V. Carlson, J.W. Engle, M.A. Kellett, T. Kibédi, G. Kim, F.G. Kondev, M. Hussain et al., Nucl. Data Sheets 148, 338 (2018). https://doi.org/10.1016/j.nds.2018.02.009 J.T. Goorley, M.R. James et al., Los Alamos Rep. LA-UR-13-22934 180, 298 (2013). https://doi.org/10.13182/NT11-135 M. Blann, J. Bisplinghoff (1982) F. Tárkányi, A. Hermanne, F. Ditrói, S. Takács, J. Radioanal. Nucl. Chem. 312, 691 (2017). https://doi.org/10.1007/s10967-017-5253-7 R. Alt, G. Beyer, V. Morozov, H. Musiol, T. Numinov, H. Tyrroff, H. Strusny, Z. Usmanova, V. Fominykh, H. Fuya et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 36, 744 (1972) R. Ma, E.S. Paul, D.B. Fossan, Y. Liang, N. Xu, R. Wadsworth, I. Jenkins, P.J. Nolan, Phys. Rev. C 41, 2624 (1990) H.C. Jain, S. Lakshmi, P.K. Joshi, Identification Of Chiral Bands In \(^{135}\)Ce (In Proc, Nuclei at the Limits, 2005) D. Brink, Nucl. Phys. 4, 215 (1957). https://doi.org/10.1016/0029-5582(87)90021-6 A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0 Y. Khazov, A. Rodionov, F. Kondev, Nucl. Data Sheets 112, 855 (2011). https://doi.org/10.1016/j.nds.2011.03.001 A. Grütter, Nucl. Phys. A 383, 98 (1982). https://doi.org/10.1016/0375-9474(82)90078-1 V. Aleksandrov, M. Semyonova, V. Semyonov, Atom. Energ. 62, 411 (1987) S. Mills, G. Steyn, F. Nortier, Int. J. Radiat. Appl. Instrum. Part A. Appl. Radiat. Isot. 43, 1019 (1992) https://doi.org/10.1016/0883-2889(92)90221-Y R. Michel, R. Bodemann, H. Busemann, R. Daunke, M. Gloris, H.J. Lange, B. Klug, A. Krins, I. Leya, M. Lp̈ke et al., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 129, 153 (1997) https://doi.org/10.1016/S0168-583X(97)00213-9 M. Shahid, K. Kim, H. Naik, M. Zaman, S.C. Yang, G. Kim, Nucl. Instrum. Methods Phys. Res., Sect. B 342, 305 (2015). https://doi.org/10.1016/j.nimb.2014.10.019 E. Garrido, C. Duchemin, A. Guertin, F. Haddad, N. Michel, V. Métivier, Nucl. Instrum. Methods Phys. Res., Sect. B 383, 191 (2016). https://doi.org/10.1016/j.nimb.2016.07.011 E. Browne, J. Tuli, Nucl. Data Sheets 108, 2173 (2007). https://doi.org/10.1016/j.nds.2007.09.002 P.K. Joshi, B. Singh, S. Singh, A.K. Jain, Nucl. Data Sheets 138, 1 (2016). https://doi.org/10.1016/j.nds.2016.11.001 Y. Khazov, A. Rodionov, S. Sakharov, B. Singh, Nucl. Data Sheets 104, 497 (2005). https://doi.org/10.1016/j.nds.2005.03.001 K. Zuber, B. Singh, Nucl. Data Sheets 125, 1 (2015). https://doi.org/10.1016/j.nds.2015.02.001 A.L. Nichols, B. Singh, J.K. Tuli, Nucl. Data Sheets 113, 973 (2012). https://doi.org/10.1016/j.nds.2012.04.002 B. Erjun, H. Junde, Nucl. Data Sheets 92, 147 (2001). https://doi.org/10.1006/ndsh.2001.0002 C.D. Nesaraja, S.D. Geraedts, B. Singh, Nucl. Data Sheets 111, 897 (2010). https://doi.org/10.1016/j.nds.2010.03.003 M.S. Basunia, Nucl. Data Sheets 127, 69 (2015). https://doi.org/10.1016/j.nds.2015.07.002 R. Firestone, Nucl. Data Sheets 108, 2319 (2007). https://doi.org/10.1016/j.nds.2007.10.001 M.S. Basunia, J.T. Morrell, M.S. Uddin, A.S. Voyles et al. (2019) (to be published)