Measure-valued processes and interacting particle systems. Application to nonlinear filtering problems

Annals of Applied Probability - Tập 8 Số 2 - 1998
Pierre Del Moral1
1Université

Tóm tắt

Từ khóa


Tài liệu tham khảo

[2] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

[9] Crisan, D. and Ly ons, T. J. (1996). Nonlinear filtering and measure valued processes. Imperial College, London. Preprint.

[10] Crisan, D. and Ly ons, T. J. (1996). Convergence of a branching particle method to the solution of the Zakai equation. Imperial College, London. Preprint.

[27] Jazwinski, A. H. (1970). Stochastic Processes and Filtering Theory. Academic Press, New York.

[30] Liang, D. and McMillan, J. (1989). Development of a marine integrated navigation sy stem. Kalman Filter Integration of Modern Guidance and Navigation Sy stems, AGARD-LS166, OTAN.

[36] Parthasarathy, K. R. (1968). Probability Measures on Metric Spaces. Academic Press, New York.

[46] Watanabe, S. (1968). A limit theorem of branching processes and continuous state branching processes. J. Math. Ky oto Univ. 8 141-167.

[1] Benes, V. E. (1981). Exact finite-dimensional filters for certain diffusions with nonlinear drift. Stochastics 5 65-92.

[3] Braun, W. and Hepp, K. (1977). The Vlasov dy namics and its fluctuation in the 1/n limit of interacting particles. Comm. Math. Phy s. 56 101-113.

[4] Carvalho, H. (1995). Filtrage optimal non lin´eaire du signal GPS NAVSTAR en racalage de centrales de navigation. Th ese de L'Ecole Nationale Sup´erieure de l'A´eronautique et de l'Espace.

[5] Carvalho, H., Del Moral, P., Monin, A. and Salut, G. (1997). Optimal nonlinear filtering in GPS/INS integration. IEEE Trans. Aerospace and Electron. Sy st. 33 835-850.

[6] Cerf, R. (1994). Une th´eorie asy mptotique des algorithmes g´en´etiques. Ph.D. dissertation, Univ. Montpellier II, Sciences et techniques du Languedoc.

[7] Chaley at-Maurel, M. and Michel, D. (1983). Des r´esultats de non existence de filtres de dimension finie. C.R. Acad. Sci. Paris Ser. I 296. plus 0pt

[8] Crisan, D. (1996). The nonlinear filtering problem. Ph.D. dissertation, Univ. Edinburgh.

[11] Crisan, D. and Ly ons, T. J. (1996). A particle approximation of the solution of the Kushner- Stratonovitch equation. Imperial College, London. Preprint.

[12] Dawson, D. A. (1975). Stochastic evolution equations and related measure-valued processes. J. Multivariate Anal. 5 1-52.

[13] Dellacherie, C. and Meyer, P. A. (1978). Probabilit´es et Potentiel. Hermann, Paris.

[14] Del Moral, P. (1994). R´esolution particulaire des probl emes d'estimation et d'optimisation nonlin´eaires. Th ese, Univ. Paul Sabatier, Rapport LAAS 94269.

[15] Del Moral, P. (1995). Nonlinear filtering using random particles. Theor. Probab. Appl. 40.

[16] Del Moral, P. (1996). Asy mptotic properties of nonlinear particle filters. Publ. Laboratoire de Statistiques et Probabilit´es, Univ. Paul Sabatier, 11-96.

[17] Del Moral, P. (1996). Nonlinear filtering: Monte Carlo particle resolution. Publ. Laboratoire de Statistiques et Probabilit´es, Univ. Paul Sabatier, 02-96.

[18] Del Moral, P. (1996). Nonlinear filtering: interacting particle resolution. Markov Processes and Related Fields 2.

[19] Del Moral, P. and Miclo, L. (1996). On the convergence and the applications of the generalized simulated annealing. Publ. Laboratoire de Statistiques et Probabilit´es, Univ. Paul Sabatier, 16-96.

[20] Del Moral, P., Noy er, J. C. and Salut, G. (1995). R´esolution particulaire et traitement non lin´eaire du signal: application radar/sonar. Traitement du Signal.

[21] Del Moral, P., Rigal, G., Noy er, J. C. and Salut, G. (1993). Traitement non-lin´eaire du signal par reseau particulaire: application radar. Quatorzi eme colloque GRETSI, Juan les Pins.

[22] Dobrushin, R. L. (1971). Markov processes with a large number of locally interacting components: existence of a limit process and its ergodicity. Problems Inform. Transmission 7 70-87.

[23] Dobrushin, R. L. (1970). Prescribing a sy stem of random variables by conditional distributions. Theory Probab. Appl. 15 459-485.

[24] Gordon, N. J., Salmon, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear/nonGaussian Bayesian state estimation. IEE Proceedings F 140 107-113.

[25] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.

[26] Holland, J. H. (1975). Adaptation in Natural and Artificial Sy stems. Univ. Michigan Press, Ann Arbor.

[28] Kallianpur, G. and Striebel, C. (1967). Stochastic differential equations occuring in the estimation of continuous parameter stochastic processes. Technical Report 103, Dept. Statistics, Univ. Minnesota.

[29] Kunita, H. (1971). Asy mptotic behavior of nonlinear filtering errors of Markov processes. J. Multivariate Anal. 1 365-393.

[31] Liggett, T. M. (1985). Interacting Particle Sy stems. Springer, New York.

[32] M´el´eard, S. and Roelly-Coppoletta, S. (1987). A propagation of chaos result for a sy stem of particles with moderate interaction. Stochastic Process. Appl. 26 317-332.

[33] McKean, H. P. (1967). Propagation of chaos for a class of nonlinear parabolic equations. Lecture Series in Differential Equations 7 41-57. Catholic Univ.

[34] Ocone, D. L. (1980). Topics in nonlinear filtering theory. Ph.D. dissertation, MIT.

[35] Pardoux, E. (1989). Filtrage non-lin´eaire et equations aux d´eriv´es partielles stochastiques associ´ees. Ecole d' ´Et´e de Probabilit´es de Saint-Flour XIX, 1989. Lecture Notes in Math. 1464 1-164. Springer, Berlin.

[37] Pollard, D. (1984). Convergence of Stochastic Processes. Springer, New York.

[38] Shiga, T. and Tanaka, H. (1985). Central limit theorem for a sy stem of Markovian particles with mean field interactions. Z. Wahrsch. Verw. Gebiete 69 439-459.

[39] Shiry aev, A. N. (1966). On stochastic equations in the theory of conditional Markov processes. Theory Probab. Appl. 11 179-184.

[40] Spitzer, F. (1969). Random processes defined through the interaction of an infinite particle sy stem. Lecture Notes in Math. 89 201-223. Springer, Berlin.

[41] Stettner, L. (1989). On invariant measures of filtering processes. In Stochastic Differential Sy stems. Lecture Notes in Control and Inform. Sci. 126. Springer, Berlin.

[42] Stratonovich, R. L. (1960). Conditional Markov processes. Theory Probab. Appl. 5 156-178.

[43] Sznitman, A. S. (1984). Nonlinear reflecting diffusion process and the propagation of chaos and fluctuations associated. J. Functional Anal. 56 311-336.

[44] Sznitman, A. S. (1989). Topics in propagation of chaos. Ecole d' ´Et´e de Probabilit´es de SaintFlour XIX, 1989. Lecture Notes in Math. 1464 165-251.

[45] Van Dootingh, M., Viel, F., Rakotopara, D. and Gauthier, J. P. (1991). Coupling of nonlinear control with a stochastic filter for state estimation: application on a free radical polimerization reactor. In I.F.A.C. International Sy mposium ADCHEM'91, Toulouse, France.