Measurable versions of Vizing's theorem

Advances in Mathematics - Tập 374 - Trang 107378 - 2020
Jan Grebík1, Oleg Pikhurko2
1Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
2Mathematics Institute and DIMAP, University of Warwick, Coventry, CV4 7AL, UK

Tài liệu tham khảo

Abért Bernshteyn, 2019, Measurable versions of the Lovász Local Lemma and measurable graph colorings, Adv. Math., 353, 153, 10.1016/j.aim.2019.06.031 Bernshteyn Bernshteyn Brooks, 1941, On colouring the nodes of a network, Proc. Camb. Philos. Soc., 37, 194, 10.1017/S030500410002168X Conley, 2013, Measurable chromatic and independence numbers for ergodic graphs and group actions, Groups Geom. Dyn., 7, 127, 10.4171/GGD/179 Conley, 2016, Brooks' theorem for measurable colorings, Forum Math. Sigma, 4, 10.1017/fms.2016.14 Csóka, 2016, Kőnig's line coloring and Vizing's theorems for graphings, Forum Math. Sigma, 4, 10.1017/fms.2016.22 Elek, 2010, Borel oracles. An analytical approach to constant-time algorithms, Proc. Am. Math. Soc., 138, 2939, 10.1090/S0002-9939-10-10291-3 Furman, 2011, A survey of measured group theory, 296 Gaboriau, 2002, On orbit equivalence of measure preserving actions, 167 Gaboriau, 2010, Orbit equivalence and measured group theory, 1501 Gupta, 1966, The chromatic index and the degree of a graph, Notices Am. Math. Soc., 13, 719 Kechris, 1995, Classical Descriptive Set Theory, vol. 156 Kechris, 2010, Global Aspects of Ergodic Group Actions, vol. 160 A.S. Kechris, A.S. Marks, Descriptive graph combinatorics, Manuscript, 2016, 104 pp. Kechris, 2004, Topics in Orbit Equivalence, vol. 1852 Kechris, 1999, Borel chromatic numbers, Adv. Math., 141, 1, 10.1006/aima.1998.1771 Kőnig, 1916, Gráok és alkalmazásuk a determinánsok Žs a halmazok elméleére, Mat. Term. Értes., 34, 104 Laczkovich, 1988, Closed sets without measurable matching, Proc. Am. Math. Soc., 103, 894, 10.1090/S0002-9939-1988-0947676-2 Lovász, 2012, Large Networks and Graph Limits, 10.1090/coll/060 Marks, 2016, A determinacy approach to Borel combinatorics, J. Am. Math. Soc., 29, 579, 10.1090/jams/836 Scheide, 2012, The maximum chromatic index of multigraphs with given Δ and μ, Graphs Comb., 28, 717, 10.1007/s00373-011-1068-4 Shalom, 2005, Measurable group theory, 391 Shannon, 1949, A theorem on coloring the lines of a network, J. Math. Phys., 28, 148, 10.1002/sapm1949281148 Stiebitz, 2012, Graph Edge Coloring Thornton Vizing, 1964, On an estimate of the chromatic class of a p-graph, Diskretn. Anal., 3, 25