Mean squared error criterion for model-based design of experiments with subset selection

Computers and Chemical Engineering - Tập 159 - Trang 107667 - 2022
Boeun Kim1, Kyung Hwan Ryu2, Seongmin Heo3
1Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
2Department of Chemical Engineering, Sunchon National University, 225 Jungang-ro, Suncheon, Jeollanam-do 57922, Republic of Korea
3Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea

Tài liệu tham khảo

Bae, 2020, Ranking-based parameter subset selection for nonlinear dynamics with stochastic disturbances under limited data, Ind. Eng. Chem. Res., 59, 21854, 10.1021/acs.iecr.0c04219 Bard, Y., 1974. Nonlinear parameter estimation. Beck, J.V., Arnold, K.J., 1977. Parameter Estimation in Engineering and Science. James Beck. Bellman, 1970, On structural identifiability, Math. Biosci., 7, 329, 10.1016/0025-5564(70)90132-X Brun, 2002, Practical identifiability of ASM2d parameters - Systematic selection and tuning of parameter subsets, Water Res, 36, 4113, 10.1016/S0043-1354(02)00104-5 Brun, 2001, Practical identifiability analysis of large environmental simulation models, Water Resour. Res., 37, 1015, 10.1029/2000WR900350 Chu, 2007, Parameter set selection for estimation of nonlinear dynamic systems, AIChE J, 53, 2858, 10.1002/aic.11295 Chu, 2009, Improving prediction capabilities of complex dynamic models via parameter selection and estimation, Chem. Eng. Sci., 64, 4178, 10.1016/j.ces.2009.06.057 Eghtesadi, 2014, Mean Square Error Based Method for Parameter Ranking and Selection To Obtain Accurate Predictions at Specified Operating Conditions, Ind. Eng. Chem. Res., 53, 6033, 10.1021/ie5002444 Érdi, 1989 Franceschini, 2008, Model-based design of experiments for parameter precision: state of the art, Chem. Eng. Sci., 63, 4846, 10.1016/j.ces.2007.11.034 Gernaey, 2010, A model-based systems approach to pharmaceutical product-process design and analysis, Chem. Eng. Sci., 65, 5757, 10.1016/j.ces.2010.05.003 Hansen, 1987, The truncated SVD as a method for regularization, Bit, 27, 534, 10.1007/BF01937276 Holmberg, 1982, On the practical identifiability of microbial growth models incorporating Michaelis-Menten type nonlinearities, Math. Biosci., 62, 23, 10.1016/0025-5564(82)90061-X Kim, 2019, Robust batch-to-batch optimization with scenario adaptation, Ind. Eng. Chem. Res., 58, 13664, 10.1021/acs.iecr.8b06233 Kim, 2019, Parameter subset selection and biased estimation for a class of ill-conditioned estimation problems, J. Process Control, 81, 10.1016/j.jprocont.2019.05.015 Kim, 2019, Efficient online model-based design of experiments via parameter subset selection for batch dynamical systems, Comput. Chem. Eng., 121, 646, 10.1016/j.compchemeng.2018.12.005 Kravaris, 2013, Advances and selected recent developments in state and parameter estimation, Comput. Chem. Eng., 51, 111, 10.1016/j.compchemeng.2012.06.001 Li, 2004, Selection of model parameters for off-line parameter estimation, IEEE Trans. Control Syst. Technol., 12, 402, 10.1109/TCST.2004.824799 López, 2015, Nonlinear ill-posed problem analysis in model-based parameter estimation and experimental design, Comput. Chem. Eng., 77, 24, 10.1016/j.compchemeng.2015.03.002 Marquaridt, 1970, Generalized inverses, ridge regression, biased linear estimation, and nonlinear estimation, Technometrics, 12, 591, 10.1080/00401706.1970.10488699 Mclean, 2012, Mathematical modelling of chemical processes-obtaining the best model predictions and parameter estimates using identifiability and estimability procedures, Can. J. Chem. Eng., 90, 351, 10.1002/cjce.20660 Miao, 2011, On identifiability of nonlinear ODE models and applications in viral dynamics, SIAM Rev, 53, 3, 10.1137/090757009 Mohideen, 1996, Optimal design of dynamic systems under uncertainty, AIChE J, 42, 2251, 10.1002/aic.690420814 Montgomery, 2021 Nikačević, 2012, Opportunities and challenges for process control in process intensification, Chem. Eng. Process. Process Intensif., 52, 1, 10.1016/j.cep.2011.11.006 Nishii, 1993, Optimality of experimental designs, Discrete Math, 116, 209, 10.1016/0012-365X(93)90402-F Pistikopoulos, 2021, Operability and control in process intensification and modular design: challenges and opportunities, AIChE J, 67, 1, 10.1002/aic.17204 Rodriguez-Fernandez, 2006, Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems, BMC Bioinformatics, 7, 1, 10.1186/1471-2105-7-483 Ryu, 2020, Mathematical modeling of microalgal internal metabolic behaviors under heterotrophic conditions and its application, Ind. Eng. Chem. Res., 59, 1631, 10.1021/acs.iecr.9b05948 Ryu, 2018, A mathematical model of intracellular behavior of microalgae for predicting growth and intracellular components syntheses under nutrient-replete and -deplete conditions, Biotechnol. Bioeng., 115, 10.1002/bit.26744 Shahmohammadi, 2019, Sequential model-based A-optimal design of experiments when the fisher information matrix is noninvertible, Ind. Eng. Chem. Res., 58, 1244, 10.1021/acs.iecr.8b03047 Tibshirani, 1996, Regression Shrinkage and Selection Via the Lasso, J. R. Stat. Soc. Ser. B, 58, 267 Weijers, 1997, A procedure for selecting best identifiable parameters in calibrating activated sludge model no. 1 to full-scale plant data, Water Sci. Technol., 36, 69, 10.2166/wst.1997.0167 Wu, 2007, The Use of Simplified or Misspecified Models: Linear Case, Can. J. Chem. Eng., 85, 386, 10.1002/cjce.5450850401 Yao, 2003, Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design, Polym. React. Eng., 11, 563, 10.1081/PRE-120024426