Mean-square convergence analysis of the semi-implicit scheme for stochastic differential equations driven by the Wiener processes

Mathematical Sciences - Tập 17 Số 1 - Trang 59-66 - 2023
Leila Torkzadeh1
1Department of Mathematics, Faculty of Mathematics, Statistics and Computer Sciences, Semnan University, Semnan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmadi, N., Vahidi, A.R., Allahviranloo, T.: An efficient approach based on radial basis functions for solving stochastic fractional differential equations. Math. Sci. 11, 113–118 (2017)

Calatayud, J., Cortés, J.C., Jornet, M.: Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique. Commun. Nonlinear Sci. Numer. Simulat. 72, 108–120 (2019)

Chen, C., Cohen, D., D Ambrosio, R., Lang, A.: Drift-preserving numerical integrators for stochastic Hamiltonian systems. Adv. Comput. Math. 46(2), 27 (2020)

Citro, V., D Ambrosio, R.: Long-term analysis of stochastic $$\theta $$-methods for damped stochastic oscillators. Appl. Numer. Math. 150, 18–26 (2020)

Cohen, D.: On the numerical discretisation of stochastic oscillators. Math. Comput. Simul. 82(8), 1478–1495 (2012)

Cohen, D., Vilmart, G.: Drift-preserving numerical integrators for stochastic Poisson systems. Int. J. Comput. Math. (2021). https://doi.org/10.1080/00207160.2021.1922679

Cortés, J.C., López-Navarrob, E., Romeroc, J.V., Roselló, M.D.: Probabilistic analysis of random nonlinear oscillators subject to small perturbations via probability density functions: theory and computing. Eur. Phys. J. Plus 136, 723 (2021)

D Ambrosio, R., Moccaldi, M., Paternoster, B.: Numerical preservation of long-term dynamics by Stochastic two-step methods. Discrete Contin. Dyn. Syst. Ser. B 23(7), 2763 (2018)

D Ambrosio, R., Scalone, C.: Filon quadrature for stochastic oscillators driven by time-varying forces. Appl. Numer. Math. 169, 21–31 (2021)

D Ambrosio, R., Scalone, C.: On the numerical structure preservation of nonlinear damped stochastic oscillators. Numer. Algorithms 86, 933–952 (2021)

de la Cruz, H., Jimenez, J.C., Zubelli, J.P.: Locally linearized methods for the simulation of stochastic oscillators driven by random forces. BIT Numer. Math. 57, 123–151 (2017)

Fallahpour, M., Khodabin, M., Maleknejad, K.: Theoretical error analysis of solution for two-dimensional stochastic Volterra integral equations by Haar wavelet. Int. J. Appl. Comput. Math. 5, 152 (2019)

Gitterman, M.: The Noisy Oscillator: Random Mass. Frequency, Damping, World Scientific, Singapore (2013)

Hashemi, B., Khodabin, M., Maleknejad, K.: Numerical solution based on Hat functions for solving nonlinear stochastic Itô Volterra integral equations driven by fractional Brownian motion. Mediterr. J. Math. 14, 24 (2017)

Higham, D.J.: Mean-square and asymptotic stability of the stochastic Theta method. SIAM J. Numer. Anal. 38, 753–769 (2000)

Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-type methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40(3), 1041–1063 (2002)

Hong, J., Scherer, R., Wang, L.: Predictor-corrector methods for a linear stochastic oscillator with additive noise. Math. Comput. Model. 46(5–6), 738–764 (2007)

Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer-Verlag, Berlin (1992)

Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester (2007)

Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics. Springer-Verlag, Berlin (2004)

Nouri, K.: The semi-implicit approach for stochastic oscillators Systems with multiplicative additive noises. Rom. Rep. Phys. 73, 116 (2021)

Nouri, K., Ranjbar, H., Baleanu, D., Torkzadeh, L.: Investigation on Ginzburg-Landau equationvia a tested approach to benchmark stochasticDavis-Skodje system. Alex. Eng. J. 60, 5521–5526 (2021)

Nouri, K., Ranjbar, H., Cortés, J.: Modifying the split-step $$\theta $$-method with harmonic-mean term for stochastic differential equations. Int. J. Numer. Anal. Model. 17(5), 662–678 (2020)

Nouri, K., Ranjbar, H., Torkzadeh, L.: Improved Euler-Maruyama method for numerical solution of the Itô stochastic differential systems by composite previous-current-step idea. Mediterr. J. Math. 15(3), 140 (2018)

Nouri, K., Ranjbar, H., Torkzadeh, L.: Solving the stochastic differential systems with modified split-step Euler-Maruyama method. Commun. Nonlinear Sci. Numer. Simul. 84, 105153 (2020)

Nouri, K., Ranjbar, H., Torkzadeh, L.: The explicit approximation approach to solve stiff chemical langevin equations. Eur. Phys. J. Plus 135, 758 (2020)

Safdari, H., Mesgrani, H., Javidi, M., Esmaeelzade Aghdam, Y.: Convergence analysis of the space fractional-order diffusion equation based on the compact finite difference scheme. Comp. Appl. Math. 39, 62 (2020)

Schenk-Hoppé, K.R.: Deterministic and stochastic Duffing-van der Pol oscillators are non-explosive. Z. Angew. Math. Phys. 47(5), 740–759 (1996)

Senosiain, M.J., Tocino, A.: On the numerical integration of the undamped harmonic oscillator driven by independent additive gaussian white noises. Appl. Numer. Math. 137, 49–61 (2019)

Stømmen, A.H., Higham, D.J.: Numerical simulation of a linear stochastic oscillator with additive noise. Appl. Numer. Math. 51(1), 89–99 (2004)

Tocino, A.: On preserving long-time features of a linear stochastic oscillator. BIT Numer. Math. 47(1), 189–196 (2007)

Tuan, N.H., Esmaeelzadeh Aghdam, Y., Jafari, H., Mesgarani, H.: A novel numerical manner for two-dimensional space fractional diffusion equation arising in transport phenomena. Numer. Methods Partial Differ. Equ. 37(2), 1397–1406 (2021)