Mean covariogram of cylinders and applications to Boolean random sets

François Willot1
1MINES ParisTech – PSL Research University, Paris, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

H. Altendorf, D. Jeulin, and F. Willot, “Influence of the fiber geometry on the macroscopic elastic and thermal properties”, Int. J. Sol. Struct, 51, 3807–3822, 2014.

S. N. Chiu, D. Stoyan, W. S. Kendall, and J. Mecke, Stochastic Geometry and Its Applications (Wiley, Chichester, 2013).

J. Dirrenberger, S. Forest, D. Jeulin, “Towards gigantic RVE sizes for 3D stochastic fibrous networks”, Int. J. Sol. Struct., 51, 359–376, 2014.

E. Couka, F. Willot, and D. Jeulin, “A mixed Boolean and deposit model for the modeling of metal pigments in paint layers”, Im. An. Ster., 34, 125–134, 2015.

X. Emery, and C. Lantuéjoul, “Geometric covariograms, indicator variograms and boundaries of planar closed sets”, Math. Geosc., 43, 905–927, 2011.

W. Gille, “The intercept length distribution density of a cylinder of revolution”, Experimentelle Technik der Physik 35, 93–98, 1987.

W. Gille, “The chord length distributions of selected infinitely long geometric figures–connections to the field of small-angle scattering”, Comp. Mat. Sci., 22, 318–332, 2001.

W. Gille, Particle and Particle Systems Characterization (CRC Press, Boca Raton, 2014).

H. S. Harutyunyan, and V. K. Ohanyan, “Covariogram of a cylinder”, J. Contemp. Math. Anal., 49(6), 366–375, 2014.

D. Jeulin, “Power laws variance scaling of Boolean random varieties”, Method. Comput. Appl. Prob., 18, 1065–1079, 2016.

D. Jeulin, P. Monnaie, and F. Péronnet, “Gypsummorphological analysis andmodeling”, Cem. Conc. Comp., 23, 299–311, 2001.

C. Lantuéjoul, “Ergodicity and integral range”, J. Microscopy, 161, 387–403, 1991.

G. Matheron, Les variables régionalisées et leur estimation: une application de la théorie des fonctions aléatoires aux sciences de la nature (Masson, Paris, 1965).

G. Matheron, Éléments pour une théorie des milieux poreux (Masson, Paris, 1967).

G. Matheron, “Ensembles fermes aleatoires, ensembles semi-markoviens et polyedres poissoniens”, Adv. Appl. Prob., 4, 508–541, 1972.

G. Matheron, “Random sets theory and its applications to stereology”, J. Microscopy, 95, 15–23, 1972.

G. Matheron. Random Sets and Integral Geometry (Wiley, New-York, 1975).

C. Peyrega, D. Jeulin, C. Delisée, and J. Malvestio, “3D morphological modelling of a random fibrous network”, Im. Anal. Ster., 28, 129–141, 2009.

C. Redenbach, and I. Vecchio, “Statistical analysis and stochastic modelling of fibre composites”, Composites Sci. Tech., 71, 107–112, 2011.

K. Robb, O. Wirjadi, and K. Schladitz, “Fiber orientation estimation from 3D image data: Practical algorithms, visualization, and interpretation”, In 7th International Conference on Hybrid Intelligent Systems (HIS), IEEE, 320–325, 2007.

R. Schneider, and W. Weil, Stochastic and Integral Geometry (Springer, Berlin, 2008).

J. Serra, “The Boolean model and random sets”, Comp. Graph. Im. Proc., 12, 99–126, 1980.

H. S. Sukiasian, and W. Gille, “Relation between the chord length distribution of an infinitely long cylinder and that of its base”, Journal of Math. Physics, 48, 53305–53312, 2007.

H. Wang, A. Pietrasanta, D. Jeulin, F. Willot, M. Faessel, L. Sorbier, M. Moreaud, “Modelling mesoporous alumina microstructure with 3D random models of platelets”, J. Microscopy, 260, 287–301, 2015.

E. Weisstein, MathWorld, http://mathworld.wolfram.com, accessed August 4, 2015.

Mathematica software version 10. 2, Wolfram Research, Inc., Champaign, Illinois, 2015.