Maximum likelihood estimation of the mixture of log-concave densities
Tài liệu tham khảo
Balabdaoui, Fadoua, Doss, Charles R., 2014. Inference for a mixture of symmetric distributions under log-concavity. ArXiv preprint arXiv:1411.4708.
Balabdaoui, 2009, Limit distribution theory for maximum likelihood estimation of a log-concave density, Ann. Statist., 37, 1299, 10.1214/08-AOS609
Benaglia, 2009, mixtools: An R package for analyzing finite mixture models, J. Stat. Softw., 32, 1, 10.18637/jss.v032.i06
Bordes, 2006, Semiparametric estimation of a two-component mixture model where one component is known, Scand. J. Statist., 33, 733, 10.1111/j.1467-9469.2006.00515.x
Bordes, 2006, Semiparametric estimation of a two-component mixture model, Ann. Statist., 34, 1204, 10.1214/009053606000000353
Bordes, 2010, Semiparametric two-component mixture model with a known component: an asymptotically normal estimator, Math. Methods Statist., 19, 22, 10.3103/S1066530710010023
Butucea, 2014, Semiparametric mixtures of symmetric distributions, Scand. J. Statist., 41, 227, 10.1111/sjos.12015
Campbell, 1974, A multivariate study of variation in two species of rock crab of the genus Leptograpsus, Aust. J. Zool., 22, 417, 10.1071/ZO9740417
Chang, 2007, Clustering with mixtures of log-concave distributions, Comput. Statist. Data Anal., 51, 6242, 10.1016/j.csda.2007.01.008
Chee, 2013, Estimation of finite mixtures with symmetric components, Stat. Comput., 23, 233, 10.1007/s11222-011-9305-5
Chen, 2013, Smoothed log-concave maximum likelihood estimation with applications, Statist. Sinica, 23, 1373
Chen, 2008, Inference for normal mixtures in mean and variance, Statist. Sinica, 18, 443
Cule, 2009, LogConcDEAD: An R package for maximum likelihood estimation of a multivariate log-concave density, J. Stat. Softw., 29, 1, 10.18637/jss.v029.i02
Cule, 2010, Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density, Electron. J. Stat., 4, 254, 10.1214/09-EJS505
Cule, 2010, Maximum likelihood estimation of a multi-dimensional log-concave density, J. R. Stat. Soc. Ser. B Stat. Methodol., 72, 545, 10.1111/j.1467-9868.2010.00753.x
Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc. Ser. B Stat. Methodol., 1
Doss, Charles, Wellner, Jon A., 2013. Global rates of convergence of the MLEs of log-concave and s-concave densities. ArXiv preprint arXiv:1306.1438.
Dümbgen, 2009, Maximum likelihood estimation of a log-concave density and its distribution function: Basic properties and uniform consistency, Bernoulli, 15, 40, 10.3150/08-BEJ141
Dümbgen, 2011, Approximation by log-concave distributions, with applications to regression, Ann. Statist., 39, 702, 10.1214/10-AOS853
Hathaway, 1985, A constrained formulation of maximum-likelihood estimation for normal mixture distributions, Ann. Statist., 795
Hohmann, 2013, Semiparametric location mixtures with distinct components, Statistics, 47, 348, 10.1080/02331888.2011.652118
Hubert, 1985, Comparing partitions, J. Classification, 2, 193, 10.1007/BF01908075
Hunter, 2007, Inference for mixtures of symmetric distributions, Ann. Statist., 224
Kim, Arlene K.H., Samworth, Richard J., 2014. Global rates of convergence in log-concave density estimation. ArXiv preprint arXiv:1404.2298.
Ma, 2015, Flexible estimation of a semiparametric two-component mixture model with one parametric component, Electron. J. Stat., 9, 444, 10.1214/15-EJS1008
McLachlan, 2007
McLachlan, 2000
Mcnicholas, 2008, Parsimonious Gaussian mixture models, Stat. Comput., 18, 285, 10.1007/s11222-008-9056-0
Pal, 2007, Estimating a polya frequency function2, Lecture Notes Monogr. Ser., 239, 10.1214/074921707000000184
Rufibach, 2007, Computing maximum likelihood estimators of a log-concave density function, J. Stat. Comput. Simul., 77, 561, 10.1080/10629360600569097
Stephens, 2000, Dealing with label switching in mixture models, J. R. Stat. Soc. Ser. B Stat. Methodol., 62, 795, 10.1111/1467-9868.00265
Walther, 2002, Detecting the presence of mixing with multiscale maximum likelihood, J. Amer. Statist. Assoc., 97, 508, 10.1198/016214502760047032
Xiang, 2014, Minimum profile Hellinger distance estimation for a semiparametric mixture model, Canad. J. Statist., 42, 246, 10.1002/cjs.11211
Yao, 2010, A profile likelihood method for normal mixture with unequal variance, J. Statist. Plann. Inference, 140, 2089, 10.1016/j.jspi.2010.02.004
Yao, 2015, Label switching and its solutions for frequentist mixture models, J. Stat. Comput. Simul., 85, 1000, 10.1080/00949655.2013.859259
Yao, 2009, Bayesian mixture labeling by highest posterior density, J. Amer. Statist. Assoc., 10.1198/jasa.2009.0237