Maximum likelihood estimation of the double exponential jump-diffusion process
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aït-Sahalia Y. (2002) Maximum-likelihood estimation of discretely-sampled diffusions: a closed-form approximation approach. Econometrica 70, 223–262
Aït-Sahalia Y., Hansen L.P. (2004) Handbook of Financial Econometrics. Amsterdam, North-Holland
Andersen L., Andreasen J. (2000) Jump-diffusion processes: Volatility smile fitting and numerical methods for pricing. Rev Derivative Res 4, 231–262
Andersen T.G., Benzoni L., Lund J. (2000) An empirical investigation of continuous-time equity return models. J Finance 57, 1239–1284
Bates D.S. (2003b) Maximum likelihood estimation of latent affine processes. Working Paper, University of Iowa
Broadie M., Yamamoto Y. (2003) Application of the fast gauss transform to option pricing. Manage Sci 49(8): 1071–1088
Carr P., Madan D. (1999) Option pricing using the fast fourier transform. J Comput Finance 2(4): 61–73
Chernov M., Gallant A.R., Ghysels E., Tauchen G. (2003) Alternative models for stock price dynamics. J Econom 116(1–2): 225–257
Cont R., Tankov P. (2003) Financial modelling with jump processes. London, Chapman & Hall / CRC, Financial Mathematic Series
Cont R., Tankov P. (2004) Nonparametric calibration of jump-diffusion option pricing models. J Comput Finance 7(3): 1–49
dH́alluin, Y., Forsyth, P., Vetzal, K.: Robust numerical methods for contingent claims under jump diffusion processes. Working Paper, School of Computer Science, University of Waterloo (2004)
Duffie D., Pan J., Singleton K.J. (2000) Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68(6): 1343–1376
Eraker B., Johannes M., Polson N. (2003) The impact of jumps in volatility and returns. J Finance 58(3): 1269–1300
Garcia, R., Ghysels, E., Renault, E.: The econometrics of option pricing, Working Paper, Université de Montréal - CIREQ / Département de sciences économiques (2004)
Huang, J., Huangm M.: How much of the corporate-treasury yield spread is due to credit risk?, Working Paper, Graduate School of Business, Stanford University (2003)
Huang J., Wu L. (2004) Specification analysis of option pricing models based on time-changed Lévy processes. J Finance 59(3): 1405–1439
Jackwerth J., Rubinstein M. (1996) Recovering probability distributions from option prices. J Finance 51, 1611–1631
Keppo, J., Meng, X., Shive, S., Sullivan, M.: Modelling and hedging options under stochastic pricing parameters, Working Paper, Industrial and Operations Engineering, University of Michigan at Ann Arbor (2003)
Kiefer N.M. (1978) Discrete parameter variation: efficient estimation of switching regression model. Econometrica 46(2): 427–34
Kou S., Wang H. (2004) Option pricing under a double exponential jump diffusion model. Manage Sci 50(9): 1178–1192
Lee, R.W.: Implied volatility: Statics, dynamics, and probabilistic interpretation. Recent advances in applied probability (2006), (inpress)
Lewis, A.: A simple option formula for general jump-diffusion and other exponential Lévy processes. Envision financial system and optioncitynet (2001)
Maheu J.M., McCurdy T. (2004) News arrival, jump dynamics and volatility components for individual stock returns. J Finance 59(2): 755–768
Merton RC. (1976a) Option pricing when underlying stock returns are discontinuous. J Financ Econ 3, 224–244
Merton R.C. (1976b) The impact on option pricing of specification error in the underlying stock price returns. J Finance 31(2): 333–350
Milgrom P.R. (1981) Good news and bad news: representation theorems and applications. Bell J Econ 12, 380–391
Naik V. (1993) Option valuation and hedging strategies with jumps in the volatility of asset returns. J Finance 48(5): 1969–1984
Patel J., Kapadia C.H., Owen D.B. (1976) Handbook of Statistical Distributions. New York, Marcel Dekker Inc.
Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1992) Numerical Recipes in FORTRAN. London, Cambridge University Press
Protter P. (1991) Stochastic Integration and Differential Equations. Berlin Heidelberg New York, Springer
Ramezani, C., Zeng, Y.:Maximum likelihood estimation of asymmetric jump-diffusion processes: Application to security prices, Working Paper, Department of Mathematics and Statistics, University of Missouri, Kansas City, see http://papers.ssrn.com/sol3/papers.cfm?abstract_id=606361 (1998)
Ramezani, C., Zeng, Y.: An empirical assessment of the double exponential jump-diffusion process, Working Paper, Department of Mathematics and Statistics, University of Missouri, Kansas City, see http://papers.ssrn.com/sol3/papers.cfm?abstract_id=606101 (2005)
Sepp A. (2004) Analytical pricing of double-barrier options under a double-exponential jump diffusion process: Applications of laplace transform. Int J Theor Appl Finance 7(2): 151–175
Sorensen M. (1991) Likelihood methods for diffusions with jumps. In: Prabhu N.V., Basawa I.V. (eds) Statistical Inference in Stochastic Processes. New York, Marcel Dekker, Inc.