Maximum Principles for a Class of Generalized Time-Fractional Diffusion Equations

Fractional Calculus and Applied Analysis - Tập 23 Số 3 - Trang 822-836 - 2020
Zeng, Shengda1,2, Migórski, Stanisław3,2, Van Nguyen, Thien4, Bai, Yunru2
1Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing, Yulin Normal University, Yulin, P.R. China
2Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, Krakow, Poland
3College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, P.R. China
4Departement of Mathematics, FPT University Education Zone, Hoa Lac High Tech Park, Hanoi, Vietnam

Tóm tắt

Two significant inequalities for generalized time fractional derivatives at extreme points are obtained. Then, we apply the inequalities to establish the maximum principles for multi-term time-space fractional variable-order operators. Finally, we employ the principles to investigate two kinds of diffusion equations involving generalized time-fractional Caputo derivatives and space-fractional Riesz-Caputo derivatives.

Tài liệu tham khảo

citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications; citation_author=M Al-Refai, Y Luchko; citation_volume=17; citation_issue=2; citation_publication_date=2014; citation_pages=483-498; citation_doi=10.2478/s13540-014-0181-5; citation_id=CR1 citation_journal_title=Appl. Math. Comput.; citation_title=Maximum principle for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives; citation_author=M Al-Refai, Y Luchko; citation_volume=257; citation_publication_date=2015; citation_pages=40-51; citation_id=CR2 citation_journal_title=Appl. Math. Lett.; citation_title=Maximum principle and its application for the nonlinear time-fractional diffusion equations with Cauchy-Dirichlet conditions; citation_author=M Borikhanov, M Kirane, BT Torebek; citation_volume=81; citation_publication_date=2018; citation_pages=14-20; citation_doi=10.1016/j.aml.2018.01.012; citation_id=CR3 citation_journal_title=J. Nonlinear Sci. Appl.; citation_title=Maximum principles for time-fractional Caputo-Katugampola diffusion equations; citation_author=L Cao, H Kong, SD Zeng; citation_volume=10; citation_publication_date=2017; citation_pages=2257-2267; citation_doi=10.22436/jnsa.010.04.75; citation_id=CR4 citation_title=Theory and Applications of Fractional Differential Equations, in: North–Holland Mathematics Studies; citation_publication_date=2006; citation_id=CR5; citation_author=AA Kilbas; citation_author=HM Srivastava; citation_author=JJ Trujillo; citation_publisher=Elsevier Science B.V. citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=Extremum principle for the Hadamard derivatives and its application to nonlinear fractional partial differential equations; citation_author=M Kirane, BT Torebek; citation_volume=22; citation_issue=2; citation_publication_date=2019; citation_pages=358-378; citation_doi=10.1515/fca-2019-0022; citation_id=CR6 citation_journal_title=SIAM J. on Control and Optimization; citation_title=Approximate controllability of fractional evolution systems with Riemann–Liouville fractional derivatives; citation_author=ZH Liu, X Li; citation_volume=53; citation_issue=4; citation_publication_date=2015; citation_pages=1920-1933; citation_doi=10.1137/120903853; citation_id=CR7 citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=Maximum principles for multi term space-time variable-order fractional diffusion equations and their applications; citation_author=ZH Liu, SD Zeng, YR Bai; citation_volume=19; citation_issue=1; citation_publication_date=2016; citation_pages=188-211; citation_doi=10.1515/fca-2016-0011; citation_id=CR8 citation_journal_title=J. Math. Anal. Appl.; citation_title=Maximum principle for the generalized time-fractional diffusion equation; citation_author=Y Luchko; citation_volume=351; citation_issue=1; citation_publication_date=2009; citation_pages=218-223; citation_doi=10.1016/j.jmaa.2008.10.018; citation_id=CR9 citation_journal_title=Computers Math. Appl.; citation_title=Some uniqueness and existence results for the initial boundary value problems for the generalized time-fractional diffusion equation; citation_author=Y Luchko; citation_volume=59; citation_issue=5; citation_publication_date=2010; citation_pages=1766-1772; citation_doi=10.1016/j.camwa.2009.08.015; citation_id=CR10 citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=Maximum principle and its application for the time-fractional diffusion equations; citation_author=Y Luchko; citation_volume=14; citation_issue=1; citation_publication_date=2011; citation_pages=110-124; citation_doi=10.2478/s13540-011-0008-6; citation_id=CR11 citation_journal_title=Fract. Calc. Appl. Anal.; citation_title=On the maximum principle for a time-fractional diffusion equation; citation_author=Y Luchko, M Yamamoto; citation_volume=20; citation_issue=5; citation_publication_date=2017; citation_pages=1131-1145; citation_doi=10.1515/fca-2017-0060; citation_id=CR12 citation_journal_title=Handbook of Fractional Calculus with Applications; citation_title=Maximum principle for the time-fractional PDEs; citation_author=Y Luchko, M Yamamoto, A Kochubei, Y Luchko; citation_volume=2; citation_publication_date=2019; citation_pages=299-326; citation_id=CR13 L. Ma, C.P. Li, On Hadamard fractional calculus. Fractals 25, No 3 (2017), ID: 1750033. L. Ma, C.P. Li, On linite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dynam. 13, No 9 (2018), ID: 090905. citation_journal_title=Acta Math. Scientia; citation_title=Mixed variational inequalities driven by fractional evolutionary equations; citation_author=S Migórski, SD Zeng; citation_volume=39; citation_issue=2; citation_publication_date=2019; citation_pages=461-468; citation_doi=10.1007/s10473-019-0211-9; citation_id=CR16 citation_journal_title=Appl. Math. Lett.; citation_title=Maximum principles for fractional differential equations derived from Mittag Leffler functions; citation_author=JJ Nieto; citation_volume=23; citation_issue=10; citation_publication_date=2010; citation_pages=1248-1251; citation_doi=10.1016/j.aml.2010.06.007; citation_id=CR17 citation_title=Fractional Differential Equations; citation_publication_date=1999; citation_id=CR18; citation_author=I Podlubny; citation_publisher=Academic Press citation_title=Fractional Integrals and Derivatives: Theory and Applications; citation_publication_date=1993; citation_id=CR19; citation_author=SG Samko; citation_author=AA Kilbas; citation_author=OI Marichev; citation_publisher=Gordon and Breach citation_journal_title=Integral Transforms and Special Functions; citation_title=Integration and differentiation to a variable fractional order; citation_author=SG Samko, B Ross; citation_volume=1; citation_issue=4; citation_publication_date=1993; citation_pages=277-300; citation_doi=10.1080/10652469308819027; citation_id=CR20 citation_journal_title=Appl. Math. Comput.; citation_title=Maximum principle and numerical method for the multi-term time-space Riesz-Caputo fractional differential equations; citation_author=H Ye, F Liu, V Anh, I Turner; citation_volume=227; citation_publication_date=2014; citation_pages=531-540; citation_id=CR21 C.T. Yin, L. Ma, C.P. Li, Comparison principles for Hadamard-type fractional differential equations. Fractals 26, No 4 (2018), ID: 1850056. citation_journal_title=Z. Angew. Math. Phys.; citation_title=A class of fractional differential hemivariational inequalities with application to contact problem; citation_author=SD Zeng, ZH Liu, S Migórski; citation_volume=69; citation_issue=2; citation_publication_date=2018; citation_pages=36; citation_doi=10.1007/s00033-018-0929-6; citation_id=CR23 citation_journal_title=Commun. Nonlinear Sci.; citation_title=A class of time-fractional hemivariational inequalities with application to frictional contact problem; citation_author=SD Zeng, S Migórski; citation_volume=56; citation_publication_date=2018; citation_pages=34-48; citation_doi=10.1016/j.cnsns.2017.07.016; citation_id=CR24