Maximum-Principle-Preserving Local Discontinuous Galerkin Methods for Allen-Cahn Equations

Jian Du1,2, Eric T. Chung3, Yang Yang4
1Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Beijing, China
2Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
3Department of Mathematics, The Chinese University of Hong Kong, Hong Kong SAR, China
4Department of Mathematical Sciences, Michigan Technological University, Houghton, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnold, D.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958)

Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688–699 (1959)

Chen, Z., Huang, H., Yan, J.: Third order maximum-principle-satisfying direct discontinuous Galerkin method for time dependent convection diffusion equations on unstructured triangular meshes. J. Comput. Phys. 308, 198–217 (2016)

Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2008)

Chuenjarern, N., Xu, Z., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for compressible miscible displacements in porous media on triangular meshes. J. Comput. Phys. 378, 110–128 (2019)

Chung, E., Lee, C.S.: A staggered discontinuous Galerkin method for convection-diffusion equations. J. Numer. Math. 20, 1–31 (2012)

Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV: the multidimensional case. Math. Comput. 54, 545–581 (1990)

Cockburn, B., Lin, S.Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II: general framework. Math. Comput. 52, 411–435 (1989)

Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws. V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

Du, J., Chung, E.: An adaptive staggered discontinuous Galerkin method for the steady state convection-diffusion equation. J. Sci. Comput. 77, 1490–1518 (2018)

Du, J., Wang, C., Qian, C., Yang, Y.: High-order bound-preserving discontinuous Galerkin methods for stiff multispecies detonation. SIAM J. Sci. Comput. 41, B250–B273 (2019)

Du, J., Yang, Y.: Maximum-principle-preserving third-order local discontinuous Galerkin methods on overlapping meshes. J. Comput. Phys. 377, 117–141 (2019)

Du, J., Yang, Y.: Third-order conservative sign-preserving and steady-state-preserving time integrations and applications in stiff multispecies and multireaction detonations. J. Comput. Phys. 395, 489–510 (2019)

Du, J., Yang, Y., Chung, E.: Stability analysis and error estimates of local discontinuous Galerkin method for convection-diffusion equations on overlapping meshes. BIT Numer. Math. 59, 853–876 (2019)

Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2018)

Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization method. SIAM Rev. 43, 89–112 (2001)

Guo, L., Yang, Y.: Positivity-preserving high-order local discontinuous Galerkin method for parabolic equations with blow-up solutions. J. Comput. Phys. 289, 181–195 (2015)

Guo, H., Yang, Y.: Bound-preserving discontinuous Galerkin method for compressible miscible displacement problem in porous media. SIAM J. Sci. Comput. 39, A1969–A1990 (2017)

Hou, T.L., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge-Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

Li, X., Shu, C.-W., Yang, Y.: Local discontinuous Galerkin method for the Keller-Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)

Liu, H., Yan, J.: The direct discontinuous Galerkin methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)

Liu, Y., Shu, C.-W., Tadmor, E., Zhang, M.: Central local discontinuous Galerkin method on overlapping cells for diffusion equations. ESAIM Math. Model. Numer. Anal. 45, 1009–1032 (2011)

Reed, W.H., Hill, T.R.: Triangular mesh method for the neutron transport equation. Los Alamos Scientific Laboratory Report LA-UR-73-479, Los Alamos (1973)

Riviere, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 8, 337–360 (1999)

Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen-Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)

Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61, 474–506 (2019)

Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28, 1669–1691 (2010)

Srinivasan, S., Poggie, J., Zhang, X.: A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations. J. Comput. Phys. 366, 120–143 (2018)

Tang, T., Yang, J.: Implicit-explicit scheme for the Allen-Cahn equation preserves the maximum principle. J. Comput. Math. 34, 471–481 (2016)

Wang, C., Wise, S., Lowengrub, J.: An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47, 2269–2288 (2009)

Wheeler, M.: An elliptic collocation finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

Xiong, T., Qiu, J.-M., Xu, Z.: High order maximum-principle-preserving discontinuous Galerkin method for convection-diffusion equations. SIAM J. Sci. Comput. 37, A583–A608 (2015)

Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

Xu, Z., Yang, Y., Guo, H.: High-order bound-preserving discontinuous Galerkin methods for wormhole propagation on triangular meshes. J. Comput. Phys. 390, 323–341 (2019)

Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

Yang, X., Han, D.: Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model. J. Comput. Phys. 330, 1116–1134 (2017)

Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229, 3091–3120 (2010)

Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)