Maximum Likelihood Estimation of Asymmetric Double Type II Pareto Distributions

Journal of Statistical Theory and Practice - Tập 14 - Trang 1-34 - 2020
Daniel Halvarsson1
1The Ratio Institute, Stockholm, Sweden

Tóm tắt

This paper considers a flexible class of asymmetric double Pareto distributions (ADP) that allows for skewness and asymmetric heavy tails. The inference problem is examined for maximum likelihood. Consistency is proven for the general case when all parameters are unknown. After deriving the Fisher information matrix, asymptotic normality and efficiency are established for a restricted model with the location parameter known. The asymptotic properties of the estimators are then examined using Monte Carlo simulations. To assess its goodness of fit, the ADP is applied to companies’ growth rates, for which it is favored over competing models.

Tài liệu tham khảo

Wang H et al (2012) Bayesian graphical lasso models and efficient posterior computation. Bayesian Anal 7(4):867–886 Armagan A, Dunson DB, Lee J (2013) Generalized double Pareto shrinkage. Stat Sin 23(1):119 Nadarajah S, Afuecheta E, Chan S (2013) A double generalized Pareto distribution. Stat Prob Lett 83(12):2656–2663 Papastathopoulos I, Tawn JA (2013) A generalised students t-distribution. Stat Probab Lett 83(1):70–77 Kotz S, Kozubowski T, Podgorski K (2012) The Laplace distribution and generalizations: a revisit with applications to communications, economics, engineering, and finance. Springer, Berlin Punathumparambath B, Kulathinal S, George S (2012) Asymmetric type II compound laplace distribution and its application to microarray gene expression. Comput Stat Data Anal 56(6):1396–1404 Mantegna RN, Stanley HE (2007) Introduction to econophysics. Cambridge University Press, Cambridge Fagiolo G, Napoletano M, Roventini A (2008) Are output growth-rate distributions fat-tailed? some evidence from OECD countries. J Appl Econom 23(5):639–669 Stanley M, Amaral L, Buldyrev S, Havlin S, Leschhorn H, Maass P, Salinger M, Stanley H (1996) Scaling behaviour in the growth of companies. Nature 379(6568):804–806 Komunjer I (2007) Asymmetric power distribution: theory and applications to risk measurement. J Appl Econom 22(5):891–921 Bottazzi G, Coad A, Jacoby N, Secchi A (2011) Corporate growth and industrial dynamics: evidence from French manufacturing. Appl Econ 43(1):103–116 Holly S, Petrella I, Santoro E (2013) Aggregate fluctuations and the cross-sectional dynamics of firm growth. J R Stat Soc Ser A (Stat Soc) 176(2):459–479 Zolotarev VM (1986) One-dimensional stable distributions, vol 65. American Mathematical Society, Providence Kozubowski TJ, Rachev ST (1999) Univariate geometric stable laws. J Comput Anal Appl 1(2):177–217 Mandelbrot BB (1997) The variation of certain speculative prices. Fractals and scaling in finance. Springer, Berlin, pp 371–418 Fama EF (1965) The behavior of stock-market prices. J Bus 38(1):34–105 Mittnik S, Rachev ST, Paolella MS (1998) Stable Paretian modeling in finance: some empirical and theoretical aspects. In: Adler RJ, Feldman RE, Taqqu MS (eds) A practical guide to heavy tails: statistical techniques and applications. Birkhauser Boston Inc., Cambridge, pp 79–110 Fu D, Pammolli F, Buldyrev S, Riccaboni M, Matia K, Yamasaki K, Stanley H (2005) The growth of business firms: theoretical framework and empirical evidence. Proc Natl Acad Sci USA 102(52):18801 Clauset A, Shalizi C, Newman M (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703 Alfarano S, Milakovic M, Irle A, Kauschke J (2012) A statistical equilibrium model of competitive firms. J Econ Dyn Control 36(1):136–149 Smith RL (1984) Threshold methods for sample extremes. In: de Oliveira J (ed) Statistical extremes and applications. Springer, New York, pp 621–638 Hosking JR, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3):339–349 Ashkar F, Tatsambon CN (2007) Revisiting some estimation methods for the generalized Pareto distribution. J Hydrol 346(3–4):136–143 de Zea Bermudez P, Kotz S (2010) Parameter estimation of the generalized Pareto distribution—part I. J Stat Plan Inference 140(6):1353–1373 de Zea Bermudez P, Kotz S (2010) Parameter estimation of the generalized Pareto distribution—part II. J Stat Plan Inference 140(6):1374–1388 Singh V, Guo H (1995) Parameter estimation for 3-parameter generalized Pareto distribution by the principle of maximum entropy (POME). Hydrol Sci J 40(2):165–181 Newey WK, McFadden D (1994) Large sample estimation and hypothesis testing. In: Engle R, McFadden D (eds) Handbook of econometrics, vol 4. Elsevier, Amsterdam, pp 2111–2245 Lehmann E, Casella G (1998) Theory of point estimation. Springer, Berlin Bottazzi G, Secchi A (2006) Explaining the distribution of firm growth rates. RAND J Econ 37(2):235–256 Axtell R (2001) Zipf distribution of US firm sizes. Science 293(5536):1818 Schwarz G et al (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464 Bottazzi G, Secchi A (2011) A new class of asymmetric exponential power densities with applications to economics and finance. Ind Corp Change 20(4):991–1030 Agro G (1995) Maximum likelihood estimation for the exponential power function parameters. Commun Stat Simul Comput 24(2):523–536