Maximizing the efficacy of Trichoderma to control Cephalosporium maydis, causing maize late wilt disease, using freshwater microalgae extracts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abd El-Migeed A, El-Sayed AB, Hassan HS (2004) Growth enhancement of olive transplants by broken cells of fresh green algae as soil application. Minufia J Agric Res 29(3):723–737
Abd El-Motty EZ, Shahin MF, El-Shiekh MH, Abd-El-Migeed M (2010) Effect of algae extract and yeast application on growth, nutritional status, yield and fruit quality of Keitte mango trees. American-Eurasian J Agric Environ Sci 1(3):421–429
Ainsworth GC, James PW (1971) Ainsworth and Bisby’s dictionary of fungi, 6th edn. Commonwealth Mycological Institute, Kew, Surrey, UK, p 612
Alhanshoul AM (2015) Studies on maize late wilt disease caused by Cephalosporium maydis. Ph.D. thesis. Fac. Agric., Cairo Univ., Egypt, p 166
Ali M (2000) Diversity in isolates of Cephalosporium maydis the causal of late wilt of maize in Egypt. M.Sc. Thesis. Fac. Agric., Cairo Univ., Egypt, p 120
Anonymous (2017) Bulletin of the agricultural statistics. Ministry of Agric. and Land Reclamation, Egypt, p 215
Ashour AM, Sabet KA, El-Shabrawy EM, Alhanshoul AM (2013) Control of maize late wilt and enhancing plant growth parameters using rhizobacteria and organic compounds. Egypt J Phytopath 41(2):187–207
Bell DK, Wells HD, Markham CR (1982) In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopath 72:379–382
Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Inter Microbiol 7:249–260
Cheng YU, Shen Zheng YI, Labavitch JM, VanderGheynst JS (2011) Impact of cell wall carbohydrate composition on the chitosan flocculation of Chlorella. Process Biochem 46:1927–1933
Degani O, Drori R, Goldblat Y (2015) Plant growth hormones suppress the development of Harpophora maydis, the cause of late wilt in maize. Physiol Molec Biol Plants 21(1):137–149
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356
El-Shafey HA, Abd-el-Rahim MF, Abd-el-Azim OZ, Abd-eI-Hamid MS (1976) Carry-over of maize stalk-rot fungi in seed. Agric Res Rev 54:29–42
El-Mehalowy AA, Hassanein NM, Khater HM, Daram El-Din EA, Youssef YA (2004) Influence of maize root colonization by rhizosphere actinomycetes and yeast fungi on plant growth and on the biological control of late wilt disease. Inter J Agric Biol 6:599–605
El-Sayed AB, Abdalla FE, Abdel-Maguid AA (2001) Use of some commercial fertilizer compounds for Scenedesmus cultivation. Egyptian J of Phycology 2:9–16
El-Sayed AB, Battah MG, El-Sayed EW (2015) Utilization efficiency of artificial carbon dioxide and corn steam liquor by Chlorella vulgaris. Biolife 3(2):391–403
El-Shafey HA, Claflin LE (1999) Late wilt. In: White DG (ed) Compendium of corn diseases, 3rd ed. The American Phytopathological Society, St. Paul, pp 43–44
El-Shafey HA, El-Shorbagy FA, Khalil I, El-Assiuty EM (1988) Additional sources of resistance to the late-wilt disease of maize caused by Cephalosporium maydis. Agric Res Rev 66:221–230
Elshahawy IE, Haggag K, Abd-El-Khair H (2016) Compatibility of Trichoderma spp. with seven chemical fungicides used in the control of soil borne plant pathogens. Res J Pharm Biol Chem Sci 7(1):1772–1785
Elshahawy IE, Saied N, Abd-El-Kareem F, Morsy A (2017b) Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder. Arch Phytopathol Plant Prot 50(3–4):150–166
Elshahawy IE, Saied NM, Morsy AA (2017a) Fusarium proliferatum, the main cause of clove rot during storage, reduces clove germination and causes wilt of established garlic plants. J Plant Pathol 99(1):81–89
García-Carneros AB, Girón I, Molinero-Ruiz L (2012) Aggressiveness of Cephalosporium maydis causing late wilt of maize in Spain. Commun Agric Appl Biol Sci 77(3):173–179
Hassan SY, Mohamed ZM, El- Sayed AB (2015) Production and evaluation of pasta supplemented with Spirulina platensis biomass. Adv Food Sci 37(4):153–162
Johnson LF, Curi EA, Bond JH, Fribourg HA (1960) Methods for studying soil microflora-plant disease relationship, 2nd edn. Burgess Publishing Company, Minneapolis, p 119
Labib HA, Abdel-Rahim MF, Salem A, Abdel-Fattah A (1975) A new maize hybrid seed resistant to late wilt disease caused by Cephalosporium maydis. Agric Res Rev 53:1–4
Liu L, Pohnert G, Wei D (2016) Extracellular metabolites from industrial microalgae and their biotechnological potential. Review, Mar Drugs 14(191):1–19
Metcalf DA (1997) Biological control of onion white root rot (Sclerotium cepivorum) using Trichoderma koningii. Ph.D. thesis. University of Tasmania, Australia, p 118
Morsy A, Elshahawy IE (2016) Anthracnose of lucky bamboo Dracaena sanderiana caused by the fungus Colletotrichum dracaenophilum in Egypt. J Adv Res 7:327–335
Nelson DL, Cox MM (2008) Lehninger’s principles of biochemistry. Freeman and Company, New York, p 115
Raposo MFDJ, Morais SCD (2011) Chlorella vulgaris as soil amendment: influence of encapsulation and enrichment with Rhizobacteria. Int J Agric Biol 13:719–724
Sabet KA, Samra AS, Mansour IM (1970) Saprophytic behavior of Cephalosporium maydis and C. acremonium. Ann Appl Biol 66:265–271
Safi C, Zebib B, Merah O, Pontalier P, Vaca-Garcia C (2014) Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew Sust Energ Rev 35:265–278
Saleh AA, Leslie JF (2004) Cephalosporium maydis is a distinct species in the Gaeumannomyces-Harpophora species complex. Mycologia 96(6):1294–1305
Samra AS, Sabet KA, Hingorani MK (1963) Late wilt disease of maize caused by Cephalosporium maydis. Phytopath 53:402–406
Shabaan MM (2010) Green microalgae water extracts as foliar feeding to wheat plants. Pak J Biol Sci 4:628–632
Singh S, Kate BN, Banerjee UC (2005) Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Rev Biotech 25:73–95
Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. The Federation of Europ Materials Societies Microbiol Ecol 54:131–140
Spinelli F, Giovanni F, Massimo N, Mattia S, Guglielmo C (2009) Perspectives on the use of a sea weed extract to moderate the negative effects of alternate bearing in apple trees. J Horti Sci Biotech 17(1):131–137
Stadnik MJ, Freitas MB (2014) Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathol 39(2):111–118
Stewart L, Schluter PJ, Shaw GR (2006) Cyanobacterial lipopolysccharides and human health. A review. Enviro Health 5:1–7
Taha TM, Youssef MA (2015) Improvement of growth parameters of Zea mays and properties of soil inoculated with two Chlorella species. Rep Opin 7(8):22–27
Wake H, Akasaka A, Unetsu H, Ozeki Y, Shimomura K, Matsunaga T (1992) Enhanced germination of artificial seeds by marine cyanobacterial extract. Appl Environ Microbiol 36:684–688
Zayadan BK, Matorin DN, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK (2014) Promising microbial consortia for producing biofertilizers for rice fields. Microbiol 83:391–397