Maximizing maximal angles for plane straight-line graphs

Computational Geometry - Tập 46 - Trang 17-28 - 2013
Oswin Aichholzer1, Thomas Hackl1, Michael Hoffmann2, Clemens Huemer3, Attila Pór4, Francisco Santos5, Bettina Speckmann6, Birgit Vogtenhuber1
1Institute for Software Technology, Graz University of Technology, Austria
2Institute for Theoretical Computer Science, ETH Zürich, Switzerland
3Departament de Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Spain
4Dept. of Applied Mathematics and Inst. for Theoretical Computer Science, Charles University, Czech Republic
5Dept. de Matemáticas, Estadística y Computación, Universidad de Cantabria, Spain
6Department of Mathematics and Computer Science, TU Eindhoven, Netherlands

Tài liệu tham khảo

Ackerman, 2009, Improved upper bounds on the reflexivity of point sets, Computational Geometry: Theory and Applications, 42, 241, 10.1016/j.comgeo.2008.05.004 Aggarwal, 1999, The angular-metric traveling salesman problem, SIAM Journal on Computing, 29, 697, 10.1137/S0097539796312721 Aichholzer, 2007, Maximizing maximal angles for plane straight line graphs, vol. 4619, 458 Aichholzer, 2003, Pseudo-triangulations from surfaces and a novel type of edge flip, SIAM Journal on Computing, 32, 1621, 10.1137/S0097539702411368 Arkin, 2003, On the reflexivity of point sets, vol. 25, 139 Aurenhammer, 2000, Optimal triangulations, vol. 4, 160 Bárány, 2010, Infinite paths with no small angles, Mathematika, 56, 26, 10.1112/S0025579309000369 Bárány, 2009, Paths with no small angles, SIAM Journal on Discrete Mathematics, 23, 1655, 10.1137/080716931 Bern, 1994, Provably good mesh generation, Journal of Computer and System Sciences, 48, 384, 10.1016/S0022-0000(05)80059-5 Dai, 2000, LMT-skeleton heuristics for several new classes of optimal triangulations, Computational Geometry Theory and Applications, 17, 51, 10.1016/S0925-7721(00)00016-X A. Dumitrescu, J. Pach, G. Tóth, Drawing Hamiltonian cycles with no large angles, in: Proc. 17th International Symposium on Graph Drawing, 2009, pp. 3–14. Edelsbrunner, 1992, An O(n2logn) time algorithm for the minmax angle triangulation, SIAM Journal on Scientific and Statistical Computing, 13, 994, 10.1137/0913058 Eppstein, 1992, The farthest point Delaunay triangulation minimizes angles, Computational Geometry Theory and Applications, 1, 143, 10.1016/0925-7721(92)90013-I Fekete, 1997, Angle-restricted tours in the plane, Computational Geometry Theory and Applications, 8, 195, 10.1016/S0925-7721(96)00012-0 Haas, 2005, Planar minimally rigid graphs and pseudo-triangulations, Computational Geometry Theory and Applications, 31, 31, 10.1016/j.comgeo.2004.07.003 Keil, 2008, The relative neighbourhood graph is a part of every 30°-triangulation, Information Processing Letters, 109, 93, 10.1016/j.ipl.2008.09.006 Kirkpatrick, 2002, Kinetic collision detection for simple polygons, International Journal of Computational Geometry and Applications, 12, 3, 10.1142/S0218195902000724 Rote, 2008, Pseudo-triangulations – a survey, Contemporary Mathematics, 453, 343, 10.1090/conm/453/08807 Streinu, 2005, Pseudo-triangulations rigidity and motion planning, Discrete and Computational Geometry, 34, 587, 10.1007/s00454-005-1184-0 B. Vogtenhuber, On plane straight line graphs, Masterʼs thesis, Graz University of Technology, Graz, Austria, January 2007.