Maximal invariant sets for restrictions of tent and unimodal maps
Tóm tắt
The aim of this paper is to study the restriction of a tent mapf: I → I to a subintervalJ ∋ I, and to characterize when the maximal invariant off⋎J is a countable set. We shall extend our results for a certain class of unimodal maps, via a semi-conjugacy. In the case of tent maps there is a critical case where the maximal invariant set is a Cantor set with Hausdorff dimension zero. The caracterization of this critical case leads to interesting arithmetical phenomena, particularly in the case of the complete tent map.
Tài liệu tham khảo
A. Douady,Julia sets and the Mandelbrot set. In: H.-O. Peitgen and P.H. Richter: The beauty of Fractals (Springer, Berlin), pp. 161–173.
J.H. Loxton andA.J. Van der Poorten,Arithmetic properties of the solutions of a class of functional equations, J.-Reine-Angew.-Math. 330 (1982), pp. 159–172.
W. de Melo and S. Van Strien,One-Dimensional Dynamics, Ergebrisse der Mathematik und ihrer Grenzgebiete 3. Folge-Band 25, Springer-Verlag, 1991.
J. Palis and F. Takens,Hyperbolicity and sensitive, chaotic dynamics at homoclinic bifurcations: fractal dimensions and infinitely many attractors, Cambridge Univ. Press (1992).
M. Schroeder,Fractal, Chaos, Power Laws — W.H. Freeman and Company, New York, 1991.