Maxillofacial reconstruction using custom-made artificial bones fabricated by inkjet printing technology

Hideto Saijo1, Kazuyo Igawa1, Yuki Kanno1, Yoshiyuki Mori1, Kayoko Kondo1, Koutaro Shimizu2, Shigeki Suzuki2, Daichi Chikazu1, Mitsuki Iino1, Masahiro Anzai3, Nobuo Sasaki4, Ung Il Chung5, Tsuyoshi Takato1
1Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
2Biomechanics Development Center, Tokyo, Japan
3Advanced Development and Supporting Center, RIKEN, Saitama, Japan
4Laboratory of Veterinary Surgery, Faculty of Agriculture, University of Tokyo, Tokyo, Japan
5Division of Tissue Engineering, University of Tokyo Hospital, Tokyo, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Herring SW, Ochareon P. Bone — special problems of the craniofacial region. Orthod Craniofac Res 2005;8:174–182

Tessier P, Kawamoto H, Matthews D, Posnick J, Raulo Y, Tulasne JF, Wolfe SA. Autogenous bone grafts and bone substitutes — tools and techniques: I. A 20 000-case experience in maxillofacial and craniofacial surgery. Plast Reconstr Surg 2005;116:6S–24S

Eppley BL, Pietrzak WS, Blanton MW. Allograft and alloplastic bone substitutes: a review of science and technology for the craniomaxillofacial surgeon. J Craniofac Surg 2005;16:981–989

Hallman M, Thor A. Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontol 2000 2008;47:172–192

Fischer-Brandies E, Dielert E. Clinical use of tricalciumphosphate and hydroxyapatite in maxillofacial surgery. J Oral Implantol 1985;12:40–44

Karashima S, Takeuchi A, Matsuya S, Udoh KI, Koyano K, Ishikawa K. Fabrication of low-crystallinity hydroxyapatite foam based on the setting reaction of alpha-tricalcium phosphate foam. J Biomed Mater Res A 2009;88:628–633

Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 2004;22:643–652

Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005;4:518–524

Jacobs PF, Reid DT. Rapid prototyping and manufacturing — fundamentals of stereolithography. 1st ed. Dearborn, MI: Society of Manufacturing Engineers; 1992

Ono I, Abe K, Shiotani S, Hirayama Y. Producing a full-scale model from computed tomographic data with the rapid prototyping technique using the binder jet method: a comparison with the laser lithography method using a dry skull. J Craniofac Surg 2000;11:527–537

Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater 2003;5:29–39

Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int Ed 2002;41:3130–3146

Igawa K, Mochizuki M, Sugimori O, Shimizu K, Yamazawa K, Kawaguchi H, Nakamura K, Takato T, Nishimura R, Suzuki S, Anzai M, Chung UI, Sasaki N. Tailor-made tricalcium phosphate bone implant directly fabricated by a three-dimensional ink-jet printer. J Artif Organs 2006;9:234–240

Hatoko M, Tada H, Tanaka A, Yurugi S, Niitsuma K, Iioka H. The use of calcium phosphate cement paste for the correction of the depressed nose deformity. J Craniofac Surg 2005;16:327–331

Tomita S, Molloy S, Jasper LE, Abe M, Belkoff SM. Biomechanical comparison of kyphoplasty with different bone cements. Spine 2004;29:1203–1207

Peltola SM, Melchels FP, Grijpma DW, Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 2008;40:268–280

Lee KW, Wang S, Fox BC, Ritman EL, Yaszemski MJ, Lu L. Poly(propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules 2007;8:1077–1084

Hutmacher DW, Cool S. Concepts of scaffold-based tissue engineering — the rationale to use solid free-form fabrication techniques. J Cell Mol Med 2007;11:654–669

Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S, Hollister SJ, Feinberg SE. Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot 2007;3:207–216

Eppley BL. Craniofacial reconstruction with computer-generated HTR patient-matched implants: use in primary bony tumor excision. J Craniofac Surg 2002;13:650–657

Tada H, Hatoko M, Tanaka A, Kuwahara M, Mashiba K, Yurugi S, Iioka H, Niitsuma K. Preshaped hydroxyapatite tricalcium-phosphate implant using three-dimensional computed tomography in the reconstruction of bone deformities of craniomaxillofacial region. J Craniofac Surg 2002;13:287–292

Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont 2006;15: 321–328

Fierz FC, Beckmann F, Huser M, Irsen SH, Leukers B, Witte F, Degistirici O, Andronache A, Thie M, Müller B. The morphology of anisotropic 3D-printed hydroxyapatite scaffolds. Biomaterials 2008;29:3799–3806

Camire CL, Nevsten P, Lidgren L, McCarthy I. The effect of crystallinity on strength development of alpha-TCP bone substitutes. J Biomed Mater Res B Appl Biomater 2006;79:159–165

Yamada M, Shiota M, Yamashita Y, Kasugai S. Histological and histomorphometrical comparative study of the degradation and osteoconductive characteristics of alpha- and beta-tricalcium phosphate in block grafts. J Biomed Mater Res B Appl Biomater 2007;82:139–148

Okuda T, Ioku K, Yonezawa I, Minagi H, Gonda Y, Kawachi G, Kamitakahara M, Shibata Y, Murayama H, Kurosawa H, Ikeda T. The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite. Biomaterials 2008;29:2719–2728