Đái tháo đường khởi phát muộn kiểu 5 là một bệnh đa hệ thống: báo cáo trường hợp về một đột biến mới trong gen HNF1B và tổng quan tài liệu
Tóm tắt
Đái tháo đường mellitus có tính di truyền theo kiểu di truyền trội autosomal, như đái tháo đường khởi phát muộn ở người trẻ (MODY), là một dạng đái tháo đường do di truyền. MODY là một loại đái tháo đường monogenic trong đó nhiều biến thể gen có thể gây ra sự thay đổi chức năng của tế bào beta. Ba hình thức phân loại MODY đã biết nhiều nhất được gây ra bởi các biến đổi ở các gen
Chúng tôi trình bày trường hợp lâm sàng của một bệnh nhân 15 tuổi có tiền sử gia đình bị đái tháo đường mellitus và kiểu hình MODY5 điển hình liên quan đến tuyến tụy và thận, với một đột biến mới, chưa được báo cáo ở gen
MODY5 được đặc trưng bởi một đột biến trong gen
Từ khóa
Tài liệu tham khảo
Firdous P, Nissar K, Ali S, Ganai BA, Shabir U, Hassan T, et al. Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol. 2018;9:253.
Bishay RH, Greenfield JR. A review of maturity onset diabetes of the young (MODY) and challenges in the management of glucokinase-MODY. Med J Aust. 2016;205(10):480–5..
Amed S, Oram R. Maturity-onset diabetes of the young (MODY): making the right diagnosis to optimize treatment. Can J Diabetes. 2016;40(5):449–54.
Urakami T. Maturity-onset diabetes of the young (MODY): current perspectives on diagnosis and treatment. Diabetes Metab Syndr Obes Targets Ther. 2019;12:1047–56.
Kim S-H. Maturity-onset diabetes of the young: what do clinicians need to know? Diabetes Metab J. 2015;39(6):468.
Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, Ellard S. Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia. 2010;53(12):2504–8.
Amed S, Dean HJ, Panagiotopoulos C, Sellers EAC, Hadjiyannakis S, Laubscher TA, et al. Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in Canadian children: a prospective national surveillance study. Diabetes Care. 2010;33(4):786–91.
Clissold RL, Hamilton AJ, Hattersley AT, Ellard S, Bingham C. HNF1B-associated renal and extra-renal disease—an expanding clinical spectrum. Nat Rev Nephrol. 2015;11(2):102–12.
Nagano N, Morisada N, Nozu K, Kamei K, Tanaka R, Kanda S, et al. Clinical characteristics of HNF1B-related disorders in a Japanese. Clin Exp Nephrol. 2019;23(9):1119–29.
Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet. 1997;17:384–5.
Edghill EL. Mutations in hepatocyte nuclear factor-1 and their related phenotypes. J Med Genet. 2006;43(1):84–90.
El-Khairi R, Vallier L. The role of hepatocyte nuclear factor 1β in disease and development. Diabetes Obes Metab. 2016;18:23–32.
Bellanne-Chantelot C, Clauin S, Chauveau D, Collin P, Daumont M, Douillard C, et al. Large genomic rearrangements in the hepatocyte nuclear Factor-1 (TCF2) gene are the Most frequent cause of maturity-onset diabetes of the young type 5. Diabetes. 2005;54(11):3126–32.
Ferrè S, Igarashi P. New insights into the role of HNF-1β in kidney (patho)physiology. Pediatr Nephrol. 2019;34(8):1325–35.
Ma Z, Gong Y, Patel V, Karner CM, Fischer E, Hiesberger T, et al. Mutations of HNF-1 inhibit epithelial morphogenesis through dysregulation of SOCS-3. Proc Natl Acad Sci. 2007;104(51):20386–91.
Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev Cell. 2009;17(6):849–60.
Cha J-Y, Kim H, Kim K-S, Hur M-W, Ahn Y. Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene: COOPERATIVE ROLE OF HEPATOCYTE NUCLEAR FACTORS 1α AND 3β. J Biol Chem. 2000;275(24):18358–65.
Dubois-Laforgue D, Cornu E, Saint-Martin C, Coste J, Bellanné-Chantelot C, Timsit J. Diabetes, associated clinical Spectrum, Long-term prognosis, and genotype/phenotype correlations in 201 adult patients with hepatocyte nuclear factor 1B ( HNF1B ) molecular defects. Diabetes Care. 2017;40(11):1436–43.
Roehlen N, Hilger H, Stock F, Gläser B, Guhl J, Schmitt-Graeff A, et al. 17q12 deletion syndrome as a rare cause for diabetes mellitus type MODY5. J Clin Endocrinol Metab. 2018;103(10):3601–10.
Decramer S, Parant O, Beaufils S, Clauin S, Guillou C, Kessler S, et al. Anomalies of the TCF2 gene are the Main cause of Fetal bilateral Hyperechogenic kidneys. J Am Soc Nephrol. 2007;18(3):923–33.
Ulinski T, Lescure S, Beaufils S, Guigonis V, Decramer S, Morin D, et al. Renal Phenotypes Related to Hepatocyte Nuclear Factor-1β ( TCF2 ) Mutations in a Pediatric Cohort. J Am Soc Nephrol. 2006;17(2):497–503.
Raaijmakers A, Corveleyn A, Devriendt K, van Tienoven TP, Allegaert K, Van Dyck M, et al. Criteria for HNF1B analysis in patients with congenital abnormalities of kidney and urinary tract. Nephrol Dial Transplant. 2015;30(5):835–42.
Bockenhauer D, Jaureguiberry G. HNF1B-associated clinical phenotypes: the kidney and beyond. Pediatr Nephrol. 2016;31(5):707–14.
Adalat S, Woolf AS, Johnstone KA, Wirsing A, Harries LW, Long DA, et al. HNF1B mutations associate with Hypomagnesemia and renal magnesium wasting. J Am Soc Nephrol. 2009;20(5):1123–31.
Stiles CE, Thuraisingham R, Bockenhauer D, Platts L, Kumar AV, Korbonits M. De novo HNF1 homeobox B mutation as a cause for chronic, treatment-resistant hypomagnesaemia. Endocrinol Diabetes Metab Case Rep. 2018;2018:17–0120. Available from: https://edm.bioscientifica.com/view/journals/edm/2018/1/EDM17-0120.xml. [cited 2020 Apr 16].
Verhave JC, Bech AP, Wetzels JFM, Nijenhuis T. Hepatocyte nuclear factor 1 β –associated kidney disease: more than renal cysts and diabetes. J Am Soc Nephrol. 2016;27(2):345–53.
Ferrè S, Bongers EMHF, Sonneveld R, Cornelissen EAM, van der Vlag J, van Boekel GAJ, et al. Early development of hyperparathyroidism due to loss of PTH transcriptional repression in patients with HNF1β mutations? J Clin Endocrinol Metab. 2013;98(10):4089–96.
Carrillo E, Lomas A, Pinés PJ, Lamas C. Long-lasting response to oral therapy in a young male with monogenic diabetes as part of HNF1B-related disease. Endocrinol Diabetes Metab Case Rep. 2017;2017:17–0052. Available from: https://edm.bioscientifica.com/view/journals/edm/2017/1/EDM17-0052.xml. [cited 2020 Apr 16].
Loirat C, Bellanné-Chantelot C, Husson I, Deschênes G, Guigonis V, Chabane N. Autism in three patients with cystic or hyperechogenic kidneys and chromosome 17q12 deletion. Nephrol Dial Transplant. 2010;25(10):3430–3.
Bedont JL, LeGates TA, Slat EA, Byerly MS, Wang H, Hu J, et al. Lhx1 controls terminal differentiation and circadian function of the Suprachiasmatic nucleus. Cell Rep. 2014;7(3):609–22.
Zhang L, Fang Y, Cheng X, Lian Y, Zeng Z, Wu C, et al. The potential protective effect of Curcumin on amyloid- β −42 induced cytotoxicity in HT-22 cells. Biomed Res Int. 2018;2018:1–8.
Faguer S, Decramer S, Chassaing N, Bellanné-Chantelot C, Calvas P, Beaufils S, et al. Diagnosis, management, and prognosis of HNF1B nephropathy in adulthood. Kidney Int. 2011;80(7):768–76.
Faguer S, Chassaing N, Bandin F, Prouheze C, Garnier A, Casemayou A, et al. The HNF1B score is a simple tool to select patients for HNF1B gene analysis. Kidney Int. 2014;86(5):1007–15.
Bingham C, Ellard S, Allen L, Bulman M, Shepherd M, Frayling T, et al. Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1β1. Kidney Int. 2000;57(3):898–907.
Brunerova L, Rahelić D, Ceriello A, Broz J. Use of oral antidiabetic drugs in the treatment of maturity-onset diabetes of the young: a mini review. Diabetes Metab Res Rev. 2018;34(1):e2940.
Hattersley AT, Greeley SAW, Polak M, Rubio-Cabezas O, Njølstad PR, Mlynarski W, et al. ISPAD clinical practice consensus guidelines 2018: the diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2018;19:47–63.