Matriz de covarianza bajo la familia hiperbólica generalizada y la construcción de portafolios

Contaduria y Administracion - Tập 61 - Trang 535-550 - 2016
José Antonio Núñez Mora1, Leovardo Mata Mata1
1EGADE, Business School, Tecnologico de Monterrey, México

Tài liệu tham khảo

Abramowitz M., y Stegun I. A. (1972). Handbook of mathematical functions. 1.a ed., Dover Publications. USA, New York. Alaitz, 2002, El modelo de Markowitz en la gestión de carteras, Cuadernos de Gestión, 2, 33 Alayón, J. L. (2014). Distribución hiperbólica generalizada: una aplicación en la selección de portafolios y cuantificación de medidas de riesgo de mercado. Series Documentos de Trabajo n.o 166. Facultad de Economía, Universidad del Rosario. Barndorff-Nielsen, 1977, Exponentially decreasing distributions for the logarithm of the particle size, Proc. R. Soc. A, 353, 401, 10.1098/rspa.1977.0041 Blæsild, P. y Sørensen, M. (1992). ‘hyp’- a computer program for analyzing data by means of the hyperbolic distribution. Research Report 248. Department of Theoretical Statistics, University of Aarhus. Breymann, W. y Lüthi, D. (2013). GHYP. Recuperado el 2 de agosto de 2014 de: http://cran.r-project.org/web/packages/ghyp/vignettes/Generalized_Hyperbolic_Distribution.pdf Burda, 2004, Signal and noise in financial correlation matrices, Physica A, Statistical Mechanics and its Applications, 344, 67, 10.1016/j.physa.2004.06.089 Dagpunar, 1989, An easily implemented generalized inverse gaussian generator, Communications in Statistics - Simulation and Computation, 18, 703, 10.1080/03610918908812785 Eberlein, 1995, Hyperbolic distributions in finance, Bernoulli, 1, 281, 10.2307/3318481 Erickson, 2009, The normal inverse gaussian distribution and the pricing of derivatives, The Journal of Derivatives, 16, 23, 10.3905/JOD.2009.16.3.023 Gábor, J.S. y Rizzo, M.L. (2004). Testing for equal distributions in high dimension. Working paper. Bowling Green State University and Ohio University. Hu, W. (2005). Calibration of multivariate generalized hyperbolic distributions using the EM algoritm, with applications in risk management, portfolio optimization and portfolio credit risk. Electronic Theses, Treatises and Dissertations. Paper 3694. The Florida State University. Justel, 1997, A multivariate Kolmogorov-Smirnov test of goodness of fit, Statistics & Probability Letters, 35, 251, 10.1016/S0167-7152(97)00020-5 Kinderman, 1977, Computer generation of random variables using the ratio of uniform deviates, ACM Transactions on Mathematical Software, 3, 257, 10.1145/355744.355750 Laloux, 1999, Noise dessing of financial correlation matrices, Phys. Rev. Lett., 83, 1467, 10.1103/PhysRevLett.83.1467 Loudin, J., y Hannu, M. (2003). A multivariate method por comparing n-dimensional distributions. Stanford, California: Phystat 200. SLAC. Markowitz, 1959 Mata, L. (2013). Estudio de la distribución hiperbólica generalizada: Aspectos teóricos y numéricos. Tesis de Doctorado, Tecnológico de Monterrey, Campus Ciudad de México. McAssey, 2013, An empirical goodness-of-fit test for multivariate distributions, Journal of Applied Statistics, 40, 1120, 10.1080/02664763.2013.780160 McNeil, 2005 Mina, J. (2011). Construcción de portafolios bajo distribuciones hiperbólicas generalizadas. Tesis de Maestría, Instituto Tecnológico Autonómo de México.(Premio Mercados Financieros 2010). Paolella, 2007 Prause, K. (1999). The generalized hyperbolic model: Estimation, financial derivatives, and risk measures. Doctoral Dissertation, University of Freiburg. Protassov, 2004, EM-based maximum likelihood parameter estimation for multivariate generalized hyperbolic distributions with fixed λ, Statistics and Computing, 14, 67, 10.1023/B:STCO.0000009419.12588.da Wertz, D. y Setz, T. (2014). fportfolio, Recuperado el 2 de febrero de 2014 de: http://cran.r-project.org/web/packages/fPortfolio/fPortfolio.pdf