Matrix properties of data from electrical capacitance tomography

Journal of Engineering Mathematics - Tập 51 Số 2 - Trang 127-146 - 2005
Weifu Fang1, E. Cumberbatch2
1Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506, USA
2School of Mathematical Sciences, Claremont Graduate University, Claremont, California, 91711, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

W. Q. Yang, 1995, Rev. Sci. Instrum, 66, 4326, 10.1063/1.1145322

T. A. York, 2001, J. Electron. Imaging, 10, 608, 10.1117/1.1377308

C. Gamio, 2002, Meas. Sci. Technol, 13, 1799, 10.1088/0957-0233/13/12/301

W. Q. Yang, 2003, Meas. Sci. Technol, 14, R1, 10.1088/0957-0233/14/1/201

D. Isaacson, 1991, SIAM J. Appl. Math, 51, 1705, 10.1137/0151087

E. Somersalo, 1992, SIAM J. Appl. Math, 52, 1023, 10.1137/0152060

D. C. Dobson, 1994, SIAM J. Appl. Math, 54, 1542, 10.1137/S0036139992237596

M. Cheney, 1999, SIAM Rev, 41, 85, 10.1137/S0036144598333613

A. Tamburrino, 2000, Inverse Problems, 16, 1585, 10.1088/0266-5611/16/5/325

A. Tamburrino, 2002, Inverse Problems, 18, 1809, 10.1088/0266-5611/18/6/323

G. Alessandrini, 1999, Proc. Amer. Math. Soc, 128, 53, 10.1090/S0002-9939-99-05474-X

D. J. Griffiths, 1999, Introduction to Electrodynamics, 3, 576

W. Q. Yang and M. Byars, An improved normalisation approach for electrical capacitance tomography. In: Proceedings of the 1st World Congress on Industrial Process Tomography (1999) pp. 215–218.

G. Golub, 1996, Matrix Computations, 3, 694

A. Limon, 2003, Electric Capacitance Tomography, 55