Matrix Linearization of Functional-Differential Equations of Point Type and Existence and Uniqueness of Periodic Solutions

Differential Equations - Tập 54 - Trang 1271-1284 - 2018
L. A. Beklaryan1, F. A. Belousov1,2
1Central Economics and Mathematics Institute of the Russian Academy of Sciences, Moscow, Russia
2National Research University, Higher School of Economics, Moscow, Russia

Tóm tắt

We study ω-periodic solutions of a functional-differential equation of point type that is ω-periodic in the independent variable. In terms of the right-hand side of the equation, we state easy-to-verify sufficient conditions for the existence and uniqueness of an ω-periodic solution and describe an iteration process for constructing the solution. In contrast to the previously considered scalar linearization, we use a more complicated matrix linearization, which permits extending the class of equations for which one can establish the existence and uniqueness of an ω-periodic solution.

Tài liệu tham khảo

Beklaryan, L.A. and Belousov, F.A., Periodic solutions of functional-differential equations of point type, Differ. Equations, 2015, vol. 51, no. 12, pp. 1541–1555. Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (Theory of Oscillations), Moscow: Nauka, 1981. Butenin, N.V., Neimark, Yu.I., and Fufaev, N.L., Vvedenie v teoriyu nelineinykh kolebanii (Introduction to the Theory of Nonlinear Oscillations), Moscow: Nauka, 1976. Krasnosel’skii, M.A. and Zabreiko, P.P., Geometricheskie metody nelineinogo analiza (Geometric Methods of Nonlinear Analysis), Moscow: Nauka, 1975. Krasnosel’skii, M.A., Perov, A.I., Povolotskii, A.I., and Zabreiko, P.P., Vektornye polya na ploskosti (Vector Fields on the Plane), Moscow: Gos. Izd. Fiz. Mat. Lit., 1963. Rozenvasser, E.N., Kolebaniya nelineinykh sistem (Oscillations of Nonlinear Systems), Moscow: Nauka, 1969. Perov, A.I. and Kostrub, I.D., Ogranichennye resheniya nelineinykh vektorno-matrichnykh differentsial’nykh uravnenii n-go poryadka (Bounded Solutions of nth-Order Nonlinear Vector-Matrix Differential Equations), Voronezh: Nauchnaya Kniga, 2013. Beklaryan, L.A., Vvedenie v teoriyu funktsional’no-differential’nykh uravnenii. Gruppovoi podkhod (Intoduction to the Theory of Functional-Differential Equations. Group Approach), Moscow: Faktorial Press, 2007.