Matrix CFAR detectors based on symmetrized Kullback–Leibler and total Kullback–Leibler divergences
Tóm tắt
Từ khóa
Tài liệu tham khảo
Richards, 2014
Gini, 2008, Knowledge Based Radar Detection, Tracking and Classification, Adaptive and Learning Systems for Signal Processing
Melvin, 2006, Knowledge-aided signal processing: a new paradigm for radar and other advanced sensors, IEEE Trans. Aerosp. Electron. Syst., 42, 983, 10.1109/TAES.2006.248215
Hao, 2012, Persymmetric Rao and Wald tests for partially homogeneous environment, IEEE Signal Process. Lett., 19, 587, 10.1109/LSP.2012.2207891
Aubry, 2013, Radar detection of distributed targets in homogeneous interference whose inverse covariance structure is defined via unitary invariant functions, IEEE Trans. Signal Process., 61, 4949, 10.1109/TSP.2013.2273444
Maio, 2015, Adaptive detection of point-like targets in spectrally symmetric interference, IEEE Trans. Signal Process., 64, 3207, 10.1109/TSP.2016.2539140
De Maio, 2007, Design and experimental validation of knowledge-based constant false alarm rate detectors, IET Radar Sonar Navig., 1, 308, 10.1049/iet-rsn:20060113
Wang, 2011, Knowledge-aided parametric tests for multichannel adaptive signal detection, IEEE Trans. Signal Process., 59, 5970, 10.1109/TSP.2011.2168220
De Maio, 2010, Knowledge-aided Bayesian radar detectors & their application to live data, IEEE Trans. Aerosp. Electron. Syst., 46, 170, 10.1109/TAES.2010.5417154
Aubry, 2014, Exploiting multiple a priori spectral models for adaptive radar detection, IET Radar Sonar Navig., 8, 695, 10.1049/iet-rsn.2013.0233
Barbaresco, 2009, New foundation of radar Doppler signal processing based on advanced differential geometry of symmetric spaces: Doppler matrix CFAR and radar application
Lapuyade-Lahorgue, 2008, Radar detection using Siegel distance between autoregressive processes, application to HF and X-band radar, 1
Barbaresco, 2011, Robust statistical radar processing in Fréchet metric space: OS-HDR-CFAR and OS-STAP processing in Siegel homogeneous bounded domains, 639
Charfi, 2013, Using the Bhattacharyya mean for the filtering and clustering of positive-definite matrices, 551
Charfi, 2013, Bhattacharyya median of symmetric positive-definite matrices and application to the denoising of diffusion-tensor fields, 1227
Wang, 2015, MIMO radar adaptive waveform design for extended target recognition, Int. J. Distrib. Sens. Netw., 2015, 1
Grossi, 2012, Kullback–Leibler divergence region in MIMO radar detection problems, 896
Cui, 2016, Feature-based non-parametric estimation of Kullback–Leibler divergence for SAR image change detection, Remote Sens. Lett., 7, 1102, 10.1080/2150704X.2016.1212418
Xu, 2013, Change detection on SAR images by a parametric estimation of the KL-divergence between Gaussian mixture models, 2109
Inglada, 2003, Change detection on SAR images by using a parametric estimation of the Kullback–Leibler divergence, vol. 4106, 4104
Wang, 2016, Anomaly detection based on probability density function with Kullback–Leibler divergence, Signal Process., 126, 12, 10.1016/j.sigpro.2016.01.008
Zeng, 2014, Detecting abnormal situations using the Kullback–Leibler divergence, Automatica, 50, 2777, 10.1016/j.automatica.2014.09.005
Liang, 2015, Stereo matching-based definition of saliency via sample-based Kullback–Leibler divergence estimation, Mach. Vis. Appl., 26, 607, 10.1007/s00138-015-0685-y
Youssef, 2015, An optimal fault detection threshold for early detection using Kullback–Leibler divergence for unknown distribution data, Signal Process., 120, 266, 10.1016/j.sigpro.2015.09.008
Weinberg, 2016, Kullback–Leibler divergence and the Pareto–Exponential approximation, SpringerPlus, 5, 1, 10.1186/s40064-016-2253-y
Cheng, 2016, The geometry of signal detection with applications to radar signal processing, Entropy, 18, 381, 10.3390/e18110381
Zhao, 2016, An improved matrix CFAR detection method base on KL divergence, J. Electron. Inform. Technol., 38, 934
Moakher, 2006, Symmetric positive-definite matrices: from geometry to applications and visualization, 285
Vemuri, 2011, Total Bregman divergence and its applications to DTI analysis, IEEE Trans. Med. Imaging, 30, 475, 10.1109/TMI.2010.2086464
Zhizhou, 2005, DTI segmentation using an information theoretic tensor dissimilarity measure, IEEE Trans. Med. Imaging, 24, 1267, 10.1109/TMI.2005.854516
Choi, 2006, Adaptive processing using real weights based on a direct data domain least squares approach, IEEE Trans. Antennas Propag., 54, 182, 10.1109/TAP.2005.859753
Cristallini, 2012, A robust direct data domain approach for STAP, IEEE Trans. Signal Process., 60, 1283, 10.1109/TSP.2011.2176335
Bhatia, 2007
Moakher, 2005, A differential geometric approach to the geometric mean of symmetric positive-definite matrices, SIAM J. Matrix Anal. Appl., 26, 735, 10.1137/S0895479803436937
Petz, 2005, Means of positive matrices: geometry and a conjecture, Ann. Math. Inform., 32, 129
Fletcher, 2008, Robust statistics on Riemannian manifolds via the geometric median, 1
Yang, 2009, Riemannian median and its estimation, LMS J. Comput. Math., 13, 461, 10.1112/S1461157020090531
Pennec, 2006, Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements, J. Math. Imaging Vis., 25, 127, 10.1007/s10851-006-6228-4
Moakher, 2006, On the averaging of symmetric positive-definite tensors, J. Elast., 82, 273, 10.1007/s10659-005-9035-z
Bhatia, 2006, Riemannian geometry and matrix geometric means, Linear Algebra Appl., 413, 594, 10.1016/j.laa.2005.08.025
Bini, 2013, Computing the Karcher mean of symmetric positive definite matrices, Linear Algebra Appl., 438, 1700, 10.1016/j.laa.2011.08.052
Amari, 1985
Chebbi, 2012, Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function, Linear Algebra Appl., 436, 1872, 10.1016/j.laa.2011.12.003
Greco, 2010, Impact of sea clutter nonstationarity on disturbance covariance matrix estimation and CFAR detector performance, IEEE Trans. Aerosp. Electron. Syst., 46, 1502, 10.1109/TAES.2010.5545205