Mathematical models of soil moisture transfer: Importance of experimental assurance and upper boundary conditions

Sofia S. Panina1, Е. В. Шеин1
1Department of Soil Science, Moscow State University, Moscow, 119991, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vadyunina, A.F. and Korchagina, Z.A., Metody issledovaniya fizicheskikh svoistv pochv (The Way to Research Soils Physical Properties), Moscow, 1986.

Globus, A.M., Eksperimental’naya gidrofizika pochv (Experimental Soils Hydrophysics), Leningrad, 1969.

Model’ adaptivno-landshaftnogo zemledeliya Vladimirskogo opol’ya (Model of Adaptive-Landscape Agriculture at Vladimir High Planes), Kiryushin, V.I., Ed., Moscow, 2004.

Teorii i metody fiziki pochv (Theories and Methods of Soils Physics), Shein, E.V. and Karpachevskii, L.O., Eds., Moscow, 2007.

Troshina, O.A., Physical properties and elements of hydrothermal conditions of complex soil covering at Vladimir Opol’e (by example of agriculture scientific research institute agriculture Field), Extended Abstract of Cand. Sci. (Biol.) Dissertation, Moscow, 2009.

Umarova, A.B., Preimushchestvennye potoki vlagi v pochvakh: zakonomernosti formirovaniya i znachenie v funktsionirovanii pochv (Predominant Water Flows in Soils: Formation Regularities and Role in Soils Functioning), Moscow, 2011.

Shein, E.V., Arkhangel’skaya, T.A., Goncharov, V.M., et al., Polevye i laboratornye metody issledovaniya fizicheskikh svoistv i rezhimov pochv (Field and Laboratory Methods for Researching Soils Physical Properties and Conditions), Moscow, 2001.

Shein, E.V., Gudima, I.I., and Mokeichev, A.V., Ways to determine the main hydrophysical functions for simulation, Vestn. Mosk. Univ., Ser. 17. Pochvoved., 1993, no. 2.

Shein, E.V., Zinchenko, S.I., Bannikov, M.V., et al., Polevye metody agrofizicheskogo isseldovaniya pochvennogo pokrova: Metod. rukovodstvo (Field Methods for Agriculture Researching of Soil Covering: Handbook), Vladimir, 2009.

Shein, E.V., Kokoreva, A.A., Gorbatov, V.S., et al., Sensitivity assessment, adjustment, and comparison of mathematical models describing the migration of pesticides in soil using lysimetric data, Eur. Soil Sci., 2009, vol. 42, no. 7, p. 769.

Shein, E.V. and Marchenko, K.A., The relationship between the pathways of water movement and spatial distribution of bulk density in the soils of the Vladimir Opol’e Region, Eur. Soil Sci., 2001, vol. 34, no. 7, p. 733.

Shein, E.V., Pachepskii, Ya.A., Guber, A.K., and Chekhova, T.I., Features of experimental detection of hydrophysical and hydrodynamical parameters for mathematical models of water and salts transition in soils, Pochvovedenie, 1995, no. 12.

Shein, E.V., Spiridonov, Yu.A., and Smetnik, A.A., Migratsiya pestitsidov v pochvakh (Pesticide Migration in Soils), Moscow, 2005.

Bougton, W., Catchment water balance modeling in Australia 1960–2004, Agric. Water Manage., 2005, vol. 71, pp. 91–116.

Bouma, J., Hydropedology as a powerful tool for environmental policy research, Geoderma, 2006, vol. 131, pp. 275–286.

van Genuchten, M.Th., Leij, F.J., and Yates, S.R., The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, Riverside, 1991.

Harou, J.J., Pulido-Velazkes, M., Rosenberg, D.E., et al., Hydro-economic models: concepts, design, application and future prospects, J. Hydrol., 2009, vol. 375, nos. 3–4, pp. 627–643.

Poluektov, R.A., Fintushal, S.M., Oparina, I.V., et al., Agrotool — a system for crop simulation, Arch. Agr. Soil Sci., 2002, vol. 48, no. 6.

Šimunek, J., Genuchten, M.Th., and Sejna, M., The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variability-Saturated Media, Riverside, 2009.

Wilding, L.P. and Lin, H., Advancing the frontiers of soil science towards a geoscience, Geoderma, 2006, vol. 131, pp. 257–274.