Mathematical modelling of mantle convection at a high Rayleigh number with variable viscosity and viscous dissipation

Journal of the Egyptian Mathematical Society - Tập 30 - Trang 1-17 - 2022
Sumaiya B. Islam1, Suraiya A. Shefa1, Tania S. Khaleque1
1Department of Applied Mathematics, University of Dhaka, Dhaka, Bangladesh

Tóm tắt

In this paper, the classical Rayleigh–Bénard convection model is considered and solved numerically for extremely large viscosity variations (i.e., up to $$10^{30}$$ ) across the mantle at a high Rayleigh number. The Arrhenius form of viscosity is defined as a cut-off viscosity function. The effects of viscosity variation and viscous dissipation on convection with temperature-dependent viscosity and also temperature- and pressure-dependent viscosity are shown through the figures of temperature profiles and streamline contours. The values of Nusselt number and root mean square velocity indicate that the convection becomes significantly weak as viscosity variation and viscous dissipation are increased at a fixed pressure dependence parameter.

Tài liệu tham khảo

Runcorn, S.: Mechanism of plate tectonics: mantle convection currents, plumes, gravity sliding or expansion? Tectonophysics 63, 297–307 (1980) Bercovici, D.: Treatise on Geophysics, Mantle Dynamics, vol. 7. Elsevier, Amsterdam (2010) Karato, S.: Rheology of the Earth’s mantle: a historical review. Gondwana Res. 18, 17–45 (2010) Rose, I.R., Korenaga, J.: Mantle rheology and the scaling of bending dissipation in plate tectonics. J. Geophys. Res. Solid Earth 116 (2011). https://doi.org/10.1029/2010JB008004 Schubert, G., Turcotte, D.L., Olson, P.: Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge (2001) Turcotte, D.L., Oxburgh, E.R.: Finite amplitude convective cells and continental drift. J. Fluid Mech. 28, 29–42 (1967). https://doi.org/10.1017/S0022112067001880 Jarvis, G.T., Peltier, W.R.: Mantle convection as a boundary layer phenomenon. Geophys. J. Int. 68, 389–427 (1982). https://doi.org/10.1111/j.1365-246X.1982.tb04907.x Moresi, L.N., Solomatov, V.: Numerical investigation of 2d convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995). https://doi.org/10.1063/1.868465 Solomatov, V., Moresi, L.N.: Three regimes of mantle convection with non-Newtonian viscosity and stagnant lid convection on the terrestrial planets. Geophys. Res. Lett. 24, 1907–1910 (1997). https://doi.org/10.1029/97GL01682 Christensen, U.: Convection with pressure- and temperature-dependent non-Newtonian rheology. Geophys. J. Int. 77, 343–384 (1984). https://doi.org/10.1111/j.1365-246X.1984.tb01939.x Doin, M.P., Fleitout, L., Christensen, U.: Mantle convection and stability of depleted and undepleted continental lithosphere. J. Geophys. Res. Solid Earth 77, 2771–2787 (1997) Dumoulin, C., Doin, M.P., Fleitout, L.: Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology. J. Geophys. Res. Solid Earth 104, 12759–12777 (1999) Khaleque, T., Fowler, A., Howell, P., Vynnycky, M.: Numerical studies of thermal convection with temperature- and pressure-dependent viscosity at extreme viscosity contrasts. Phys. Fluids 27, 076603 (2015) Maurice, M., Tosi, N., Samuel, H., Plesa, A.C., Hüttig, C., Breuer, D.: Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res. Planets 122, 577–598 (2017). https://doi.org/10.1002/2016JE005250 Shahraki, M., Schmeling, H.: Plume-induced geoid anomalies from 2D axi-symmetric temperature- and pressure-dependent mantle convection models. J. Geodyn. 50–60, 193–206 (2012) Fowler, A.C., Howell, P.D., Khaleque, T.S.: Convection of a fluid with strongly temperature and pressure dependent viscosity. Geophys. Astrophys. Fluid Dyn. 110, 130–165 (2016). https://doi.org/10.1080/03091929.2016.1146264 King, S.D., Lee, C., Van Keken, P.E., Leng, W., Zhong, S., Tan, E., Tosi, N., Kameyama, M.C.: A community benchmark for 2-D Cartesian compressible convection in the Earth’s mantle. Geophys. J. Int. 180, 73–87 (2010) Conrad, C.P., Hager, B.H.: The thermal evolution of an earth with strong subduction zones. Geophys. Res. Lett. 26, 3041–3044 (1999) Leng, W., Zhong, S.: Constraints on viscous dissipation of plate bending from compressible mantle convection. Earth Planet Sci. Lett. 297, 154–164 (2010) Morgan, J.P., Rüpke, L.H., White, W.M.: The current energetics of earth’s interior: agravitational energy perspective. Front. Earth Sci. 4, 46 (2016) Balachandar, S., Yuen, D., Reuteler, D., Lauer, G.: Viscous dissipation in three-dimensional convection with temperature-dependent viscosity. Science 267, 1150–1153 (1995) Conrad, C., Hager, B.: Effects of plate bending and fault strength at subduction zones on plate dynamics. J. Geophys. Res. 104, 17551–17571 (1999) Ushachew, E.G., Sharma, M.K., Makinde, O.D.: Numerical study of MHD heat convection of nanofluid in an open enclosure with internal heated objects and sinusoidal heated bottom. Comput. Therm. Sci. 13(5), 1–16 (2021) Megahed, A.M.: Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and thermal radiation. J. Egypt Math. Soc. 27, 12 (2019). https://doi.org/10.1186/s42787-019-0016-y Ferdows, M., Murtaza, M.G., Shamshuddin, M.: Effect of internal heat generation on free convective power-law variable temperature past a vertical plate considering exponential variable viscosity and thermal conductivity. J. Egypt Math. Soc. 27, 56 (2019). https://doi.org/10.1186/s42787-019-0062-5 Ahmed, Z., Nadeem, S., Saleem, S., Ellahi, R.: Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int. J. Numer. Method H 29, 4607–4623 (2019) Fetecau, C., Vieru, D., Abbas, T., Ellahi, R.: Analytical solutions of upper convected Maxwell fluid with exponential dependence of viscosity under the influence of pressure. Mathematics 9(4), 334 (2021) Solomatov, V.S.: Scaling of temperature and stress dependent viscosity convection. Phys. Fluids 7, 266–274 (1995). https://doi.org/10.1063/1.868624 Christensen, U.R., Yuen, D.A.: Layered convection induced by phase transitions. J. Geophys. Res. Solid Earth 90, 10291–10300 (1985) Fowler, A.: Mathematical Geoscience, vol. 36. Springer, Berlin (2011) Huang, J., Zhong, S., van Hunen, J.: Controls on sublithospheric small-scale convection. J. Geophys. Res. Solid Earth 108 (2003). https://doi.org/10.1029/2003JB002456 Huang, J., Zhong, S.: Sublithospheric small-scale convection and its implications for the residual topography at old ocean basins and the plate model. J. Geophys. Res. Solid Earth. 110 (2005). https://doi.org/10.1029/2004JB003153 King, S.D.: On topography and geoid from 2-d stagnant lid convection calculations. Geochem. Geophys. Geosyst. 10 (2009) https://doi.org/10.1029/2008GC002250 Zimmerman, W.B.: Multiphysics Modeling with Finite Element Methods. World Scientific Publishing Company, Singapore (2006) Blankenbach, B., Busse, F., Christensen, U., Cserepes, L., Gunkel, D., Hansen, U., Harder, H., Jarvis, G., Koch, M., Marquart, G., et al.: A benchmark comparison for mantle convection codes. Geophys. J. Int. 98, 23–38 (1989). https://doi.org/10.1111/j.1365-246X.1989.tb05511.x Koglin Jr, D.E., Ghias, S.R., King, S.D., Jarvis, G.T., Lowman, J.P.: Mantle convection with reversing mobile plates: a benchmark study. Geochem. Geophys. Geosyst. 6 (2005). https://doi.org/10.1029/2005GC000924 Jarvis, G.T., Mckenzie, D.P.: Convection in a compressible fluid with infinite Prandtl number. J. Fluid Mech. 96, 515–583 (1980) Ricard, Y.: Physics of mantle convection. In: Bercovici, D. (ed.) Treatise on Geophysics. 7, 31–87 (2009)