Mathematical modeling of vaporization during laser-induced thermotherapy in liver tissue

Sebastian Blauth1,2, Frank Hübner3, Christian Leithäuser2, Norbert Siedow2, Thomas J. Vogl3
1TU Kaiserslautern, Kaiserslautern, Germany
2Fraunhofer Institute for Industrial Mathematics (ITWM), Kaiserslautern, Germany
3Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt/Main, Germany

Tóm tắt

AbstractLaser-induced thermotherapy (LITT) is a minimally invasive method causing tumor destruction due to heat ablation and coagulative effects. Computer simulations can play an important role to assist physicians with the planning and monitoring of the treatment. Our recent study with ex-vivo porcine livers has shown that the vaporization of the water in the tissue must be taken into account when modeling LITT. We extend the model used for simulating LITT to account for vaporization using two different approaches. Results obtained with these new models are then compared with the measurements from the original study.

Từ khóa


Tài liệu tham khảo

Müller GJ, Roggan A. Laser-induced interstitial thermotherapy. Bellingham: SPIE; 1995.

Fasano A, Hömberg D, Naumov D. On a mathematical model for laser-induced thermotherapy. Appl Math Model. 2010;34(12):3831–40. https://doi.org/10.1016/j.apm.2010.03.023.

Mohammed Y, Verhey JF. A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions. Biomed Eng Online. 2005;4(1):2. https://doi.org/10.1186/1475-925X-4-2.

Hübner F, Leithäuser C, Bazrafshan B, Siedow N, Vogl TJ. Validation of a mathematical model for laser-induced thermotherapy in liver tissue. Lasers Med Sci. 2017;32(6):1399–409. https://doi.org/10.1007/s10103-017-2260-4.

Leithäuser C, Hübner F, Bazrafshan B, Siedow N, Vogl TJ. Experimental validation of a mathematical model for laser-induced thermotherapy. In: European consortium for mathematics in industry. Heidelberg: Springer; 2018.

Yang D, Converse MC, Mahvi DM, Webster JG. Expanding the bioheat equation to include tissue internal water evaporation during heating. IEEE Trans Biomed Eng. 2007;54(8):1382–8. https://doi.org/10.1109/TBME.2007.890740.

Suárez RB, Campanone L, Garcia M, Zaritzky N. Comparison of the deep frying process in coated and uncoated dough systems. J Food Eng. 2008;84(3):383–93.

Carey VP. Liquid-vapor phase-change phenomena: an introduction to the thermophysics of vaporization and condensation processes in heat transfer equipment. Boca Raton: CRC Press; 2020.

Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122. https://doi.org/10.1152/jappl.1948.1.2.93.

Niemz MH et al.. Laser-tissue interactions. Berlin: Springer; 2007. https://doi.org/10.1007/978-3-030-11917-1.

Modest MF. Radiative heat transfer. San Diego: Academic Press; 2003.

Demtröder W. Experimentalphysik 1. Berlin: Springer; 2018. https://doi.org/10.1007/978-3-662-54847-9.

Yang D, Converse MC, Mahvi DM, Webster JG. Measurement and analysis of tissue temperature during microwave liver ablation. IEEE Trans Biomed Eng. 2007;54(1):150–5. https://doi.org/10.1109/TBME.2006.884647.

Geuzaine C, Remacle J-F. Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng. 2009;79(11):1309–31. https://doi.org/10.1002/nme.2579.

Alnæs MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells GN. The fenics project version 1.5. Arch Numer Softw. 2015;3(100). https://doi.org/10.11588/ans.2015.100.20553.

Logg A, Mardal K-A, Wells GN et al.. Automated solution of differential equations by the finite element method. Heidelberg: Springer; 2012. https://doi.org/10.1007/978-3-642-23099-8.

Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Karpeyev D, Kaushik D, Knepley MG, May DA, McInnes LC, Mills RT, Munson T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H. PETSc users manual. Technical report ANL-95/11—Revision 3.11. Argonne National Laboratory; 2019. https://www.mcs.anl.gov/petsc.

Puccini S, Bär N-K, Bublat M, Kahn T, Busse H. Simulations of thermal tissue coagulation and their value for the planning and monitoring of laser-induced interstitial thermotherapy (LITT). Magn Reson Med. 2003;49(2):351–62. https://doi.org/10.1002/mrm.10357.

Roggan A, Dorschel K, Minet O, Wolff D, Muller G. The optical properties of biological tissue in the near infrared wavelength range. In: Laser-induced interstitial therapy. Bellingham: SPIE; 1995. p. 10–44.

Giering K, Minet O, Lamprecht I, Müller G. Review of thermal properties of biological tissues. In: Laser-induced interstitial therapy. Bellingham: SPIE; 1995. p. 45–65.

Schwarzmaier H-J, Yaroslavsky IV, Yaroslavsky AN, Fiedler V, Ulrich F, Kahn T. Treatment planning for MRI-guided laser-induced interstitial thermotherapy of brain tumors—the role of blood perfusion. J Magn Reson Imaging. 1998;8(1):121–7. https://doi.org/10.1002/jmri.1880080124.

Andres M, Blauth S, Leithäuser C, Siedow N. Identification of the blood perfusion rate for laser-induced thermotherapy in the liver. 2019. arXiv:1910.09199.