Mathematical model of population dynamics with the world population size stabilizing about a stationary level
Tài liệu tham khảo
S. P. Kapitsa, Essay on the Theory of Human Population Growth: Demographic Revolution and Information Society (Nikitskii Klub, Moscow, 2008) [in Russian].
H. von Foerster, P. Mora, and L. Amiot, Science 132, 1291–1295 (1960).
S. J. von Hoerner, J. Brit. Interplanet. Soc. 28, 691–712 (1975).
S. P. Kapitsa, Mat. Model. 4(6), 65–79 (1992).
V. I. Naidenov and I. A. Kozhevnikova, Dokl. Math. 68, 400–405 (2003) [Dokl. Akad. Nauk 393, 591–596 (2003)].
A. V. Korotaev, A. S. Malkov, and D. A. Khalturina, History Laws: Mathematical Simulation of the Development of the World-System (KomKniga, Moscow, 2007) [in Russian].
A. V. Akimov, The Year 2300: Global Problems and Russia (Vostoch. Univ., Moscow, 2008) [in Russian].
B. M. Dolgonosov, Nonlinear Dynamics of Ecological and Hydrological Processes (Librokom, Moscow, 2009) [in Russian].
M. Kremer, Quart. J. Econ. 108, 681–716 (1993).
S. Kuznets, Demographic and Economic Change in Developed Countries (Princeton Univ. Press, Princeton, NJ, 1960), pp. 324–340.
A. P. Fedotov, Globalistics: Fundamentals of the Modern World Science (Aspekt, Moscow, 2002) [in Russian].
V. G. Gorshkov, Physical and Biological Foundations Life Sustainability (VINITI, Moscow, 1995) [in Russian].