Mathematical methods for computing the extremal power values in the nodes of ac electric power systems

Computational Mathematics and Modeling - Tập 23 - Trang 175-194 - 2012
I. P. Bogdanov1
1Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, Russia

Tóm tắt

The article describes possible applications of mathematical methods to compute the limits of allowed variation of power in the nodes of an AC electric power system and provides an overview of the main groups of approaches that can be used to solve this problem.

Tài liệu tham khảo

T. Van Cutsem and C. Vournas, Voltage Stability of Electric Power Systems, Boston, Kluwer Academic Publishers (1998). L. L. Grigsby, Power System Stability and Control, Boca Raton, CRC Press (2007). H. W. Dommel and W. F. Tinney, “Optimal power flow solutions,” IEEE Trans. Power Apparatus and Systems, 87, No. 10, 1866–1876 (1968). W. W. Hogan, “Financial transmission right formulations,” Working paper, Center for Business and Government, John F. Kennedy School of Government, Harvard University, Cambridge, Massachusetts (2002). M. R. Davidson, Yu. V. Dogadushkina, E. M. Kreinse, et al., “A mathematical model of electric power system control under conditions of a competitive wholesale market for electric energy and power in Russia,” Izv. RAN, TiSU, No. 2, 84–94 (2009). S. Stoft, Power System Economics: Designing Markets for Electricity [Russian translation], Moscow: Mir (2006). V. M. Gornshtein, B. P. Miroshnichenko, A. V. Ponomarev, et al., Optimization Methods for Power System Regimes [in Russian], Moscow, Energiya (1981). V. I. Idel’chik, Electric Systems and Grids [in Russian], Moscow: Energoatomizdat (1989). I. P. Bogdanov and M. R. Davidson, “Determining the limits of admissible variation of active power in AC grid nodes,” Vestnik MGU, Ser. 15, Vychisl. Matem. Kibernet., No. 2 (2011) (forthcoming). V. A. Venikov, A. A. Glazunov, L. A. Shukov, et al., Electric Systems. Electric Grids [in Russian], Moscow, Vysshaya Shkola (1998). I. A. Hiskens and R. J. Davy, “Exploring the power flow solution space boundary,” IEEE Trans. Power Systems, 16, No. 3, 389–395 (2001). L. L. Grigsby, The electric Power Engineering Handbook, Boca Raton, CRC Press (2001). P. W. Sauer, R. J. Evans, and M. A. Pai, “Maximum unconstrained loadability of power systems,” Proc. IEEE International Symposium on Circuits and Systems, 3, 1818–1821 (1990). T. Van Cutsem, “A method to compute reactive power margins with respect to voltage collapse,” IEEE Trans. Power Systems, 6, No. 1, 145–156 (1991). F. L. Alvarado and T. H. Jung, “Direct detection of voltage collapse conditions,” Proc. Bulk Power System Voltage Phenomena – Voltage Stability and Security, EL-6183, EPRI (January 1989), pp. 5.23–5.38. C. A. Canizares, F. L. Alvarado, C. L. DeMarco, et al., “Point of collapse methods applied to AC/DC power systems,” IEEE Trans. Power Systems, 7, No. 2, 673–683 (1992). C. A. Canizares and F. L. Alvarado, “Point of collapse and continuation methods for large AC/DC systems,” IEEE Trans. Power Systems, 8, No. 1, 1–8 (1993). C. A. Canizares, “Conditions for saddle-node bifurcations in AC/DC power systems,” International Journal of Electrical Power & Energy Systems, 17, No. 1, 61–68 (1995). H. D. Chiang and R. Jean-Jumeau, “A more efficient formulation for computation of the maximum loading points in electric power systems,” IEEE Trans. Power Systems, 10, No. 2, 635–646 (1995). W. Gu, F. Milano, P. Jiang, et al., “Improving large-disturbance stability through optimal bifurcation control and time domain simulations,” Electric Power Systems Research, 78, No. 3, 337–345 (2008). V. Ajjarapu and C. Christy, “The continuation power flow: a tool for steady state voltage stability analysis,” IEEE Trans. Power Systems, 7, No. 1, 416–423 (1992). M. Bedrinana, D. Bedoya, and C. A. Castro, “Hybrid method for calculating the maximum loading point using continuation load flow and nonlinear programming techniques,” Proc. IEEE Power Tech Conference, Lausanne, Switzerland (2007), pp. 1929–1934. H. D. Chiang, A. J. Flueck, K. S. Shah, et al., “CPFLOW: A practical tool for tracing power system steady-state stationary behavior due to load and generation variations,” IEEE Trans. Power Systems, 10, No. 2, 623–634 (1995). E. E. Nino, C. A. Castro, L. C. P. da Silva, et al., “Continuation load flow using automatically determined branch megawatt losses as parameters,” IEE Proc. Generation, Transmission and Distribution, 153, No. 3, 300–308 (2006). L. A. L. Zarate, C. A. Castro, J. L. M. Ramos, et al., “Fast computation of voltage stability security margins using nonlinear programming techniques,” IEEE Trans. Power Systems, 21, No. 1, 19–27 (2006). Z. Hu and X. Wang, “Efficient computation of maximum loading point by load flow method with optimal multiplier,” IEEE Trans. Power Systems, 23, No. 2, 804–806 (2008). C. H. Fujisawa and C. A. Castro, “Simple method for computing power systems maximum loading conditions,” Proc. IEEE Power Tech. Conference, Bucharest, Romania (2009). B. L. Tavares, M. Bedrinana, and C. A. Castro, “New method based on load flow with step size optimization for calculating the maximum loading point,” Proc. IEEE Power Tech. Conference, Bucharest, Romania (2009). H. Sato, “Computation of power system loadability limits,” IEEE/PES Transmission and Distribution Conference and Exhibition 2002, Asia Pacific, 3, (2002), pp. 1707–1711. O. O. Obadina and G. J. Berg, “Determination of voltage stability limit in multimachine power systems,” IEEE Trans. Power Systems, 3, No. 4, 1545–1554 (1988). J. Lu, C. W. Liu, and J. S. Thorp, “New methods for computing a saddle-node bifurcation point for voltage stability analysis,” IEEE Trans. Power Systems, 10, No. 2, 978–989 (1995). N. A. Magnitskii, Modern Methods for the Analysis of Nonlinear Dissipative Ordinary Differential Equation Systems [in Russian], Moscow: Izd. MGU (2004). R. Seydel, From Equilibrium to Chaos: Practical Bifurcation and Stability Analysis, New York, Elsevier (1988). C. A. Canizares, “Applications of optimization to voltage collapse analysis,” IEEE/PES Summer Meeting, San Diego, USA, July 14 (1998). Z. C. Zeng, F. D. Galiana, B. T. Ooi, et al., “A simplified approach to estimate maximum loading conditions in the load flow problem,” IEEE Trans. Power Systems, 8, No. 2, 646–654 (1993). K. Iba, H. Suzuki, M. Egawa, et al., “Calculation of critical loading condition with nose curve using homotopy continuation method,” IEEE Trans. Power Systems, 6, No. 2, 584–593 (1991). G. Strang, Linear Algebra and Its Applications [Russian translation], Moscow, Mir (1980). S. Iwamoto and Y. Tamura, “A load flow calculation method for ill-conditioned power systems,” IEEE Trans. Power Apparatus and Systems, 100, No. 4, 1736–1743 (1981). T. J. Overbye, “A power flow measure for unsolvable cases,” IEEE Trans. Power Systems, 9, No. 3, 1359–1365 (1994). L. M. C. Braz, C. A. Castro, and C. A. F. Murari, “A critical evaluation of step size optimization based load flow methods,” IEEE Trans. Power Systems, 15, No. 1, 202–207 (2000). B. T. Polyak, “Constrained minimization methods,” Itogi Nauki i Tekhniki, ser. Mat. Analiz , 12, (1974), pp. 147–1997. A. F. Izmailov and M. V. Solodov, Numerical Optimization Methods [in Russian], Moscow, Fizmatlit (2005). D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods [Russian translation], Moscow: Radio i Svyaz, (1987). D. P. Bertsekas, Nonlinear Programming, Belmont, Athena Scientific (1999). M. Aoki, Introduction to Optimization Techniques [Russian translation], Moscow, Nauka (1977). J. Nocedal and S. J. Wright, Numerical Optimization, New York, Springer (1999). C. J. Parker, I. F. Morrison, and D. Sutanto, “Application of an optimisation method for determining the reactive margin from voltage collapse in reactive power planning,” IEEE Trans. Power Systems, 11, No. 3, 1473–1481 (1996). G. D. Irisarri, X. Wang, J. Tong, et al., “Maximum loadability of power systems using interior point non-linear optimization method,” IEEE Trans. Power Systems, 12, No. 1, 162–172 (1997). Y. Dai, J. D. McCalley, and V. Vittal, “Simplification, expansion and enhancement of direct interior point algorithm for power system maximum loadability,” IEEE Trans. Power Systems, 15, No. 3, 1014–1021 (2000). L. V. Barboza and L. A. Hecktheuer, “Identifying critical limits for the maximum loadability of electric power systems,” Proc. Large Engineering Systems Conference on Power Engineering (2007), pp. 148–153. Y. C. Wu, A. S. Debs, R. E. Marsten, “A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows,” Proc. Power Industry Computer Application Conference (1993), 138–145. S. Granville, “Optimal reactive dispatch through interior point methods,” IEEE Trans. Power Systems, 9, No. 1, 136–146 (1994). S. Granville, J. C. O. Mello, and A. C. G. Melo, “Application of interior point methods to power flow unsolvability,” IEEE Trans. Power Systems, 11, No. 2, 1096–1103 (1996). A. Semlyen, B. Gao, and W. Janischewskyj, “Calculation of the extreme loading condition of a power system for the assessment of voltage stability,” IEEE Trans. Power Systems, 6, 1): 307–315 (1991). K. K. Nambiar, “A generalization of the maximum power transfer theorem,” Proc. IEEE (Lett.), 57, No. 7, 1339–1340 (1969). H. Baudrand, “On the generalizations of the maximum power transfer theorem,” Proc. IEEE (Lett.), 58, No. 10, 1780–1781 (1970). P. M. Lin, “Determination of available power from resistive multiports,” IEEE Trans. Circuit Theory (Corresp.), 19, No. 4, 385–386 (1972). F. Spiney, “On generalizations of the maximum power transfer problem,” Proc. IEEE (Lett.), 60, No. 7, 903–904 (1972). B. A. Mathis and H. F. Mathis, “Maximum power transfer from a multiple-terminal network to a single impedance,” Proc. IEEE (Lett.), 60, No. 6, 746 (1972). C. A. Desoer, “The maximum power transfer theorem for n-ports,” IEEE Trans. Circuit Theory, 20, No. 3, 328–330 (1973). M. Vidyasagar, “Maximum power transfer in n ports with passive loads,” IEEE Trans. Circuits and Systems, 21, No. 3, 327–330 (1974). A. J. Calvaer, “On the maximum loading of active linear electric multiports,” Proc. IEEE, 71, No. 2, 282–283 (1983). U. A. Bakshi and V. U. Bakshi, Basic Electrical Engineering, Pune, Technical Publications (2009). W. Li, Y. Wang, and T. Chen, “Investigation on the Thevenin equivalent parameters for online estimation of maximum power transfer limits,” IET Generation, Transmission and Distribution, 4, No. 10, 1180–1187 (2010).