Mathematical investigation of IP3-dependent calcium dynamics in astrocytes
Tóm tắt
We study evoked calcium dynamics in astrocytes, a major cell type in the mammalian brain. Experimental evidence has shown that such dynamics are highly variable between different trials, cells, and cell subcompartments. Here we present a qualitative analysis of a recent mathematical model of astrocyte calcium responses. We show how the major response types are generated in the model as a result of the underlying bifurcation structure. By varying key channel parameters, mimicking blockers used by experimentalists, we manipulate this underlying bifurcation structure and predict how the distributions of responses can change. We find that store-operated calcium channels, plasma membrane bound channels with little activity during calcium transients, have a surprisingly strong effect, underscoring the importance of considering these channels in both experiments and mathematical settings. Variation in the maximum flow in different calcium channels is also shown to determine the range of stable oscillations, as well as set the range of frequencies of the oscillations. Further, by conducting a randomized search through the parameter space and recording the resulting calcium responses, we create a database that can be used by experimentalists to help estimate the underlying channel distribution of their cells.
Tài liệu tham khảo
Aguado, F., Espinosa-Parrilla, J., Carmona, M., & Soriano, E. (2002). Neuronal activity regulates correlated network properties of spontaneous calcium transients in astrocytes in situ. The Journal of Neuroscience, 22(21), 9430–9444.
Agulhon, C., Sun, M., Murphy, T., Myers, T., Lauderdale, K., & Fiacco, T. (2012). Calcium signaling and gliotransmission in normal vs. reactive astrocytes. Frontiers in Pharmacology, 3, 139.
Amiri, M., Bahrami, R., & Janahmadi, M. (2012). Functional contributions of astrocytes in synchronization of a neuronal network model. Journal of Theoretical Biology, 292, 60–70.
Anderson, C., & Swanson, R.A. (2000). Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia, 5, 81–94.
Bartlett, P., Metzger, W., Gaspers, L., & Thomas, A. (2015). Differential regulation of multiple steps in inositol 1,4,5-trisphosphate signaling by protein kinase c shapes hormone-stimulated ca2+ oscillations. The Journal of Biological Chemistry, 290(30), 18519–18533.
Bezzi, P., Carmignoto, G., Pasti, L., Vesce, S., Rossi, D., Rizzini, B.L., Pozzan, T., & Volterra, A. (1998). Prostanglandins stimulate calcium dependent glutamate release from astrocytes. Nature, 391, 281–285.
Cao, P., Tan, X., Donovan, G., Sanderson, M., & Sneyd, J. (2014). A deterministic model predicts the properties of stochastic calcium oscillations in airway smooth muscle cells. PLOS Computational Biology, 10(8), e1003783.
Courjaret, R., & Machaca, K. (2014). Mid-range ca2+ signalling mediated by functional coupling between store-operated ca2+ entry and ip3-dependent ca2+ release. Nature Communications, 5(3916). doi:10.1038/ncomms4916.
Croft, W., Reusch, K., Tilunaite, A., Russell, N., Thul, R., & Bellamy, T. (2016). Probabilistic encoding of stimulus strength in astrocyte global calcium signals. Glia, 64(4), 537–552.
Croisier, H., Tan, X., Perez-Zoghbi, J., Sanderson, M., Sneyd, J., & Brook, B. (2013). Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model. PLOS One, 8(7), e69598.
de Lanerolle, N., Lee, T., & Spencer, D.D. (2010). Astrocytes and epilepsy. Neurotherapeutics, 7(4), 424–438.
De Pittà, M., & Brunel, N. (2016). Modulation of synaptic plasticity by glutamatergic gliotransmission: a modeling study. Neural Plasticity, 2016.
De Pittà, M., Goldberg, M., Volman, V., Berry, H., & Ben-Jacob, E. (2009). Glutamate regulation of calcium and ip3 oscillating and pulsating dynamics in astrocytes. Journal of Biological Physics, 35, 383–411.
De Young, G., & Keizer, J. (1992). A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in ca2+ concentration. Proceedings of the National Academy of Sciences, 89, 9895–9899.
Di Garbo, A., Barbi, M., Chillemi, S., Alloisio, S., & Nobile, M. (2007). Calcium signalling in astrocytes and modulation of neural activity. BioSystems, 89(1–3), 74–83.
Dupont, G. (2014). Modeling the intracellular organization of calcium signaling. WIREs Systems Biology and Medicine, 6, 227–237.
Dupont, G., Falcke, M., Kirk, V., & Sneyd, J. (2016). Models of Calcium Signalling. Springer International Publishing.
Falcke, M. (2004). Reading the patterns in living cells-the physics of ca2+ signaling. Advances in Physics, 53, 255–440.
Fujita, T., Chen, M.J., Li, B., Smith, N.A., Peng, W., Sun, W., Toner, M.J., Kress, B.T., Wang, L., Benraiss, A., Takano, T., Wang, S., & Nedergaard, M. (2014). Neuronal transgene expression in dominant-negative snare mice. The Journal of Neuroscience, 34(50), 16594–16604.
Gatto, C., & Milanick, M.A. (1993). Inhibition of the red blood cell calcium pump by eosin and other flurescein analogues. The American Journal of Physiology, 264(6 Pt 1), C1577–C1586.
Haydon, P.G. (2001). Glia: listening and talking to the synapse. Nature Reviews, 2, 185–193.
Haydon, P.G., & Nedergaard, M. (2015). How do astrocytes participate in neural plasticity. Cold Spring Harbor Perspectives in Biology, 7, a020438.
Hines, M., Morse, T., Migliore, M., Carnevale, N., & Shepherd, G.M. (2004). Modeldb: a database to support computational neuroscience. Journal of Computational Neuroscience, 17(50), 7–11.
Höfer, T., Venance, L., & Giaume, C. (2002). Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. The Journal of Neuroscience, 22, 4850–4859.
Jousset, H., Frieden, M., & Demaurex, N. (2007). Stim1 knockdown reveals that store-operated ca2+ channels located close to sarco/endoplasmic ca2+ atpases (serca) pumps silently refill the endoplasmic reticulum. Journal of Biological Chemistry, 282 (15), 11456–11464.
Kantevari, S., Gordon, G., MacVicar, B., & Ellis-Davies, G.C.R. (2011). A practical guide to the synthesis and use of membrane-permeant acetoxymethyl esters of caged inositol polyphosphates. Nature Protocols, 6, 327–337.
Keener, J., & Sneyd, J. (2009). Mathematical physiology. Springer Science + Business Media.
Larsen, B.R., Assentoft, M., Cotrina, M.L., Hua, S., Nedergaard, M., Kaila, K., Voipio, J., & MacAulay, N. (2014). Contributions of the na + /k + -atpase, nkcc1, and kir4.1 to hippocampal k + clearance and volume responses. Glia, 62(4), 608–622.
Lavrentovich, M., & Hemkin, S. (2008). A mathematical model of spontaneous calcium(ii) oscillations in astrocytes. Journal of Theoretical Biology, 251, 553–560.
Li, Y.-X., & Rinzel, J. (1996). Equations for insp3 receptor-mediated ca2+ oscillations derived from a detailed kinetic model: a hodgkin-huxley like formalism. Journal of Theoretical Biology, 166, 461–473.
Liu, Q., Xum, Q., Kangm, J., & Nedergaard, M. (2004). Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biology, 1(4), 307–316.
Liu, W., Tang, F., & Chen, J. (2010). Designing dynamical output feedback controllers for store-operated ca2+ entry. Mathematical BioSciences, 228, 110–118.
Malarkey, E., Ni, Y., & Parpura, V. (2008). Ca2+ entry through trpc1 channels contributes to intracellular ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia, 56, 821–835.
McKay, M., Beckman, R., & Conover, W. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code technometrics. Glia, 21(2), 239–245.
Nedergaard, M., & Verkhratsky, A. (2012). Artifact versus reality–how astrocytes contribute to synaptic events. Glia, 60, 1013–1023.
Nedergaard, M., Ransom, B.R., & Goldman, S.A. (2003). New roles for astrocytes: redefining the functional architecture of the brain. Trends Neuroscience, 26, 523–530.
Nezu, A., Tanimura, A., Morita, T., & Tojyo, Y. (2010). Use of fluorescence resonance energy visualization of ins(1,4,5)p3 dynamics in living cells: two distinct pathways for ins(1,4,5)p3 generation following mechanical stimulation of hsy-ea1 cells. Journal of Cell Science, 123, 2292–2298.
Pasti, L., Pozzan, T., & Carmignoto, G. (1995). Long-lasting changes of calcium oscillations in astrocytes. a new form of glutamate-mediated plasticity. Journal of Cell Science, 270(25), 15203–15210.
Plenge-Tellechea, F., Soler, F., & Fernandez-Belda, F. (1997). On the inhibition mechanism of sarcoplasmic or endoplasmic reticulum ca21-atpases by cyclopiazonic acid. Journal of Biological Chemistry, 272(5), 2794–2800.
Reato, D., Cammarota, M., Parra, L., & Carmignoto, G. (2012). Computational model of neuron-astrocyte interactions during focal seizure generation. Frontiers in Computational Neuroscience, 6(81). doi:10.3389/fncom.2012.00081.
Ridet, J., Malhotra, S.K., Privat, A., & Gage, F.H. (1997). Reactive astrocytes: cellular and molecular cues to biological function. Trends in Neuroscience, 20(12), 570–577.
Roos, J., DiGregorio, P., Yeromin, A., Ohlsen, K., Lioudyno, M., Zhang, S., Safrina, O., Kozak, J., Wagner, S., Cahalan, M., Veliçelebi, G., & Stauderman, K. (2005). Stim1, an essential and conserved component of store-operated ca2+ channel function. Journal of Cell Biology, 169(3), 435–445.
Shigetomi, E., Tong, X., Kwan, K., Corey, D., & Khakh, B. (2012). Trpa1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through gat-3. Nature Neuroscience, 15(1), 70–80.
Singh, P., Mhaka, A.M., Christensen, S.B., Gray, J.J., Denmeade, S.R., & Isaacs, J.T. (2005). Applying linear interaction energy method for rational design of noncompetitive allosteric inhibitors of the sarco- and endoplasmic reticulum calcium-atpase. Journal of Medicinal Chemistry, 48, 3005–3014.
Sneyd, J., Tsaneva-Atanasova, K., Yule, D., Thompson, J., & Shuttleworth, T. (2004). Control of calcium oscillations by membrane fluxes. PNAS, 101(5), 1392–1396.
Sneyd, J., Tsaneva-Atanasova, K., Reznikov, V., Bai, Y., Sanderson, M., & Yule, D.I. (2006). A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. PNAS, 103(6), 1675–1680.
Takahashi, D., Vargas, J., & Wilcox, K. (2010). Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiology of Disease, 40, 573–585.
Tanimura, A., Morita, A., Nezu, A., Shitara, A., Hashimoto, N., & Tojyo, Y. (2009). Use of fluorescence resonance energy transfer-based biosensors for the quantitative analysis of inositol 1,4,5-trisphosphate dynamics in calcium oscillations. Journal of Biological Chemistry, 284(13), 8910–8917.
Toivari, E., Manninen, T., Nahata, A., Jalonen, T., & Linne, M. (2011). Effects of transmitters and amyloid-beta peptide on calcium signals in rat cortical astrocytes: Fura-2am measurements and stochastic model simulations. PLOS One, 6(3), e17914.
Tower, D., & Young, O.M. (1973). The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. Journal of Neurochemistry, 20, 269–278.
Ullah, G., Jung, P., & Cornell-Bell, A.H. (2006). Anti-phase calcium oscillations in astrocytes via inositol (1,4,5)-trisphosphate regeneration. Cell Calcium, 39, 197–208.
Verkhratsky, A., Rodríguez, J., & Parpura, V. (2012a). Calcium signalling in astroglia. Molecular and Cellular Endocrinology, 353, 45–56.
Verkhratsky, A., Sofroniew, M.V., Messing, A., deLanerolle, N.C., Rempe, D., Rodríguez, J.J., & Nedergaard, M. (2012b). Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro, 4(3), e00082.
Wade, J., McDaid, L., Harkin, J., Crunelli, V., & Scott Kelso, J. (2011). Bidirectional coupling between astrocytes and neurons mediates learning and dynamic coordination in the brain: a multiple modeling approach. PLOS One, 6(12), e29445.
Wallraf, A., Kohling, R., Heinemann, U., Theis, M., Willecke, K., & Steinhauser, C. (2006). The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. The Journal of Neuroscience, 26, 5438–5447.
Wang, F., Smith, N.A., Xu, Q., Fujita, T., Baba, A., Matsuda, T., Takano, T., Bekar, L., & Nedergaard, M. (2012). Astrocytes modulate neural network activity by ca2+ - dependent uptake. Science Signaling, 5(218), ra26.
Wang, F., Smith, N.A., Xu, Q., Goldman, S., Peng, W., Huang, J.H., Takano, T., & Nedergaard, M. (2013). Photolysis of caged ca2+ but not receptor-mediated ca2+ signaling triggers astrocytic glutamate release. The Journal of Neuroscience, 33(44), 17404–17412.
Zhou, Y., & Danbolt, N.C. (2013). Gaba and glutamate transporters in brain. Frontiers in Endocrinology, 4(165). doi:10.3389/fendo.2013.00165.