Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phản ứng tim mạch của mẹ và thai nhi đối với bài tập ngắt quãng cường độ cao và bài tập cường độ vừa liên tục trong thai kỳ: Một thử nghiệm chéo ngẫu nhiên
Tóm tắt
Chúng tôi nhằm mục đích so sánh phản ứng tim mạch của mẹ và thai nhi đối với một lần tập luyện ngắt quãng cường độ cao (HIIT) so với tập luyện liên tục cường độ vừa (MICT) trong thai kỳ. Mười lăm phụ nữ mang thai đơn (27,3 ± 3,5 tuần tuổi thai, 33 ± 4 tuổi) đã được tuyển chọn. Sau khi thực hiện bài kiểm tra thể lực tối đa, các tham gia viên sẽ tham gia vào một buổi HIIT (10 lần 1 phút với nhịp tim tối đa [HRmax] ≥ 90%) xen kẽ 1 phút hồi phục chủ động và MICT (30 phút ở 64–76% HRmax) cách nhau 48 giờ theo thứ tự ngẫu nhiên. Nhịp tim mẹ, huyết áp, tốc độ dòng máu động mạch não giữa (MCAv) và động mạch não sau (PCAv), cũng như các chỉ số hô hấp liên tục được theo dõi trong suốt HIIT/MICT. Nhịp tim thai nhi, cũng như tỷ lệ tâm thu/tâm trương (S/D), chỉ số kháng (RI) và chỉ số pH (PI) được đánh giá ngay trước và sau khi tập luyện. Nhịp tim trung bình của mẹ cao hơn trong HIIT (82 ± 5% HRmax) so với MICT (74 ± 4% HRmax; p < 0.001). Trong phiên HIIT, các tham gia viên đạt được nhịp tim cao nhất là 96 ± 5% HRmax (dao động từ 87–105% HRmax). Tốc độ dòng máu động mạch não của mẹ tăng lên khi tập luyện nhưng không khác biệt giữa HIIT và MICT cho MCAv (p = 0.340) và PCAv (p = 0.142). Nhịp tim thai nhi tăng lên trong khi tập luyện (p = 0.244) nhưng không khác biệt giữa các buổi (HIIT: Δ + 14 ± 7 bpm; MICT: Δ + 10 ± 10 bpm). Các chỉ số lưu lượng máu rốn giảm xuống khi tập luyện và không có sự khác biệt giữa các buổi tập (PI: p = 0.707; tỷ lệ S/D: p = 0.671; RI: p = 0.792). Không quan sát thấy tình trạng chậm nhịp tim thai nhi, và tỷ lệ S/D, RI, và PI vẫn trong giới hạn bình thường cả trước và ngay sau tất cả các buổi tập. Một lần tập HIIT cấp tính bao gồm các nỗ lực lặp lại gần như tối đa kéo dài 1 phút, cũng như bài tập MICT được mẹ và thai nhi dung nạp tốt.
Từ khóa
#Phản ứng tim mạch #bài tập ngắt quãng cường độ cao #tập luyện cường độ vừa #thai kỳ #nghiên cứu ngẫu nhiên chéoTài liệu tham khảo
Davenport MH, Ruchat SM, Poitras VJ, et al. Prenatal exercise for the prevention of gestational diabetes mellitus and hypertensive disorders of pregnancy: a systematic review and meta-analysis. Br J Sports Med. 2018;52(21):1367–75.
Davenport MH, McCurdy AP, Mottola MF, et al. Impact of prenatal exercise on both prenatal and postnatal anxiety and depressive symptoms: a systematic review and meta-analysis. Br J Sports Med. 2018;52(21):1376–85.
Evenson K, Wen F. Prevalence and correlates of objectively measured physical activity and sedentary behaviour among US pregnant women. Prev Med. 2011;53(1–2):39–43.
Mottola MF, Davenport MH, Ruchat SM, et al. 2019 Canadian guideline for physical activity throughout pregnancy. Br J Sport Med. 2018;40(11):1549–59.
Coll C, Dmingues M, Goncalves H, Bertoldi A. Perceived barriers to leisure-time physical activity during pregnancy: a literature review of quantitative and qualiative evidence. Sci Med Sport. 2017;20:17–25.
Wewege M, Berg R, Keech A. The effects of high-intensity interval training vs. moderate-intensity continuous training on body composition in overweight and obese adults: a systematic review and meta-analysis. Obes Rev. 2017;18(6):635–46.
Bø K, Artal R, Barakat R, et al. Exercise and pregnancy in recreational and elite athletes: 2016/2017 evidence summary from the IOC expert group meeting, Lausanne. Part 5. Recommendations for health professionals and active women. Br J Sports Med. 2018;52(17):1080–5.
Clapp J, Stepanchak W, Tomaselli J, et al. The effect of exercise training during pregnancy on flow redistriction in mother and fetus. Med Sci Sports Exerc. 1999;31(5):139.
Beetham KS, Giles C, Noetel M, et al. The effects of vigorous intensity exercise in the third trimester of pregnancy: a systematic review and meta-analysis. BMC Pregnancy Childbirth. 2019;19(1):1–18.
Lazo-Osorio R, Pereira R, Christofani JS, et al. Effect of physical training on metabolic response of pregnant rats submitted to swimming under thermal stress. J Res Med Sci. 2009;14:223–30.
Krishna U, Bhalerao S. Placental insufficiency and fetal growth restriction. J Obstet Gynecol. 2011;61(5):505–11.
Skow RJ, Davenport MH, Mottola MF, et al. Effects of prenatal exercise on fetal heart rate, umbilical and uterine blood flow: a systematic review and meta-analysis. Br J Sports Med. 2018;53(2):124–33.
Hornberger L, Sahn D. Rhythm abnormalities of the fetus. Heart. 2007;93:1294–300.
Szymanski LM, Satin AJ. Strenuous exercise during pregnancy: is there a limit? Am J Obstet Gynecol. 2012;207(3):179.e1-6.
Rafla NM, Beazely JM. The effect of maternal exercise on fetal umbilical artery waveforms. Eur J Obstet Gynecol Reprod Biol. 1991;40(2):119–22.
Salvesen KA, Hem E, Sundgot-Borgen J. Fetal wellbeing may be compromised during strenuous exercise among pregnant elite athletes. Br J Sports Med. 2012;46(4):279–83.
Bø K, Artal R, Barakat R, et al. Exercise and pregnancy in recreational and elite athletes: 2016 evidence summary from the IOC expert group meeting, Lausanne. Part 1-exercise in women planning pregnancy and those who are pregnant. Br J Sports Med. 2016;50(10):571–89.
Thompson WR. Worldwide survey of fitness trends for 2022. ACSM Health Fit J. 2022;26(1):11–20.
Gillen JB, Gibala MJ. Interval training: a time-efficient exercise strategy to improve cardiometabolic health. Appl Physiol Nutr Metab. 2018;43(10):iii–iv.
Weston K, Wisloff U, Coombes J. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. Br J Sport Med. 2014;48(16):1227–34.
Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part I: cardiopulmonary emphasis. Sport Med. 2013;43(5):313–38.
Nagpal TS, Everest C, Goudreau AD, et al. To HIIT or not to HIIT? The question pregnant women may be searching for online: a descriptive observational study. Perspect Public Health. 2021;141(2):81–8.
Anderson J, Pudwell J, McAuslan C, et al. Acute fetal response to high-intensity interval training in the second and third trimesters of pregnancy. Appl Physiol Nutr Metab. 2021;46(12):1552–8.
Gibala M, Little J, Macdonald M, Hawley J. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–84.
Guiraud T, Nigam A, Gremeaux V, et al. High-intensity interval training in cardiac rehabilitation. Sport Med. 2012;42(7):587–605.
Wisloff U, Ellingsen O, Kemi O. High-intensity interval training to maximizing cardiac benefits of exercise training? Exerc Sport Sci Rev. 2009;3(3):139–46.
Søgaard D, Lund MT, Scheuer CM, et al. High-intensity interval training improves insulin sensitivity in older individuals. Acta Physiol. 2018;222(4): e13009.
Wowdzia J, Hazell T, Davenport M. Glycemic response to acute high-intensity interval versus moderate-intensity continuous exercise during pregnancy. Physiol Rep. 2022;10(18): e15454.
Dolatabadi Z, Amiri-Farahani L, Ahmadi K, Pezaro S. Barriers to physical activity in pregnant women living in Iran and its predictors: a cross sectional study. BMC Pregnancy Childbirth. 2022;22(1):1–11.
Evenson K, Moos M, Carrier K, Siega-Riz A. Perceived barriers to physical activity among pregnant women. Public Health Nurs. 2013;30(4):361–9.
Wolfe LA, Mottola MF. PARmed-X for pregnancy. Can Soc Exerc Physiol. 2002;1–4.
Wowdzia JB, Davenport MH. Cardiopulmonary exercise testing during pregnancy. Birth Defects Res. 2021;113(3):248–64.
Willie C, Colino FL, Bailey DM, et al. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J Neurosci Methods. 2011;196:221–37.
Regan R, Fisher J, Duffin J. Factors affecting the determination of cerebrovascular reactivity. Brain Behav. 2014;4(5):775–8.
Favre M, Lim V, Falvo M, Serrador J. Cerebrovasular reactivity and cerebral autoregulation are improved in the supine posture compared to upright in healthy men and women. PLoS ONE. 2020;15(3): e0229049.
Conley A, Karayanidis F, Jolly T, et al. Cerebral arterial pulsatility and global white matter microstructure impact spatial working memory in older adults with and without cardiovascular risk factors. Aging Neurosci. 2020;12(245).
Schneider C, Rasband W, Eliceiri K. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9:671–5.
Labrecque L, Rahimaly K, Imhoff S, et al. Dynamic cerebral autoregulation is attenuated in young fit women. Physiol Rep. 2019;7(2):1–12.
Labrecque L, Drapeau A, Rahimaly K, et al. Dynamic cerebral autoregulation and cerebrovascular carbon dioxide reactivity in middle and posterior cerebral arteries in young endurance-trained women. J Appl Physiol. 2021;130(6):1724–35.
Krogh J, Speyer H, Gluud C, Nordentoft M. Exercise for patients with major depression: a protocol for a systematic review with meta-analysis and trial sequential analysis. Syst Rev. 2015;4:40.
Little JP, Gillen JB, Percival ME, et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J Appl Physiol. 2011;111(6):1554–60.
Gillen J, Little J, Punthakee Z, et al. Acute high intensity interval exercise reduces the postprandial glucose response and prevalence of hyperglycaemia in patients with type 2 diabetes. Diabetes Obes Metab. 2012;14(6):575–7.
Winding K, Munch G, Lepson U, et al. The effect on glycaemic control of low-volume high-intensity interval training versus endurance training in individuals with type 2 diabetes. Diabetes Obes Metab. 2018;20(5):1131–9.
Boyd JC, Simpson CA, Jung ME, Gurd BJ. Reducing the intensity and volume of interval training diminishes cardiovascular adaptation but not mitochondrial biogenesis in overweight/obese men. PLoS One. 2013;8(7):e68091.
Hood M, Little J, Tarnopolsky M, et al. Low-volume interval training improves muscle oxidative capacity in sedentary adults. Med Sci Sports Exerc. 2011;43(10):1849–56.
Kumareswaran K, Elleri D, Allen JM, et al. Physical activity energy expenditure and glucose control in pregnant women with type 1 diabetes: is 30 minutes of daily exercise enough? Diabetes Care. 2013;36(5):1095–101.
Bessinger R, McMurray R, Hackney A. Substrate utilization and hormonal responses to moderate intensity exercise during pregnancy and after delivery. Am J Obstet Gynecol. 2002;186(4):757–64.
McParlin C, Robson SC, Tennant PWG, et al. Objectively measured physical activity during pregnancy: a study in obese and overweight women. BMC Pregnancy Childbirth. 2010;10:22–4.
Kleinlogg J, Nijssen K, Menskink R, Joris P. Effects of physical exercise training on cerebral blood flow measurements: a systematic review of human intervention studies. Int J Sport Nutr Exerc Metab, 2022; 33(1):47–59.
Guadagni V, Drogos LL, Tyndall AV, et al. Aerobic exercise improves cognition and cerebrovascular regulation in older adults. Neurology. 2020;94(21):E2245–7.
Ivey FM, Ryan AS, Hafer-Macko CE, MacKo RF. Improved cerebral vasomotor reactivity after exercise training in hemiparetic stroke survivors. Stroke. 2011;42(7):1994–2000.
Skow RJ, Labrecque L, Rosenberger JA, et al. Prenatal exercise and cardiovascular health (PEACH) study: Impact of acute and chronic exercise on cerebrovascular hemodynamics and dynamic cerebral autoregulation. J Appl Physiol. 2022;132(1):247–60.
Matenchuk BA, James MA, Skow RJ, et al. Longitudinal study of cerebral blood flow regulation during exercise in pregnancy. J Cereb Blood Flow Metab. 2020;40(11):2278–88.
Lucas SJE, Cotter JD, Brassard P, Bailey DM. High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence. J Cereb Blood Flow Metab. 2015;35(6):902–11.
Calverley TA, Ogoh S, Marley CJ, et al. HIITing the brain with exercise: mechanisms, consequences and practical recommendations. J Physiol. 2020;598(13):2513–30.
Bailey DM, Evans KA, McEneny J, et al. Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage. Exp Physiol. 2011;96(11):1196–207.
Phillips AA, Matin N, Jai M, et al. Transient hypertension after spinal cord injury leads to cerebrovascular endothelial dysfunction and fibrosis. J Neurotrauma. 2018;35(3):573–81.
Labrecque L, Drapeau A, Rahimaly K, et al. Comparable blood velocity changes in middle and posterior cerebral arteries during and following acute high-intensity exercise in young fit women. Physiol Rep. 2020;8(9):1–10.
Tallon CM, Simair RG, Koziol AV, et al. Intracranial vascular responses to high-intensity interval exercise and moderate-intensity steady-state exercise in children. Pediatr Exerc Sci. 2019;31(3):290–5.
Erkkola R, Pirhonen J, Kivijarvi A. Flow velocity waveforms in uterine and umbilical arteries during submaximal bicycle exercise in normal pregnancy. Obstet Gynecol. 1992;79:611–5.
Wowdzia J, McHugh T, Thornton J, et al. Elite athletes and pregnancy outcomes: a systematic review and meta-analysis. Med Sci Sports Exercise, 2021;53(3):534–42.
Davenport MH, Nesdoly A, Ray L, et al. Pushing for change: a qualitative study of the experiences of elite athletes during pregnancy. Br J Sports Med. 2022;452–7.