Bền vững vật liệu cho môi trường: Xử lý bùn đỏ

Brajendra Mishra1, Sumedh Gostu2
1Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, USA
2Department of Material Science and Engineering, Worcester Polytechnic Institute, Worcester, USA

Tóm tắt

Quy trình Bayer đã cách mạng hóa việc khai thác nhôm từ quặng bauxite. Tuy nhiên, việc chiết xuất alumina bằng phương pháp thủy nhiệt liên quan đến việc sinh ra sản phẩm phụ, bùn đỏ, bao gồm các chất rắn không hòa tan gồm các oxit sắt, silicat nhôm natri, titania, silica và các nguyên tố đất hiếm. Tích tụ bùn đỏ (hay còn gọi là cặn bauxite) trên toàn cầu đạt 30 tỷ tấn, sản xuất với tỷ lệ 125 triệu tấn mỗi năm (2013). Việc sử dụng bùn đỏ cho các mục đích xây dựng, xử lý nước thải, sản phẩm kim loại và phẩm màu được liệt kê. Nỗ lực chế biến kim loại bùn đỏ để tạo ra các sản phẩm có giá trị gia tăng khác nhau như gang, len xỉ sắt, magnetite, titania và cacbide sắt được trình bày trong bài báo.

Từ khóa

#bùn đỏ #alumina #xử lý nước thải #sản phẩm kim loại #cải thiện môi trường

Tài liệu tham khảo

Habbashi F. Textbook of Hydrometallurgy. Métallurgie Extractive Québec, 1999 Edward J, Frary F, Jefferies Z. Aluminum and Its Production. Columbus: McGraw-Hill Book Company, Inc, 1930 Information from Company Websites of USGS. Alcoa. 2017, http://www.alcoa.com/australia/en/sustainability/environmental-management. asp, https://minerals.usgs.gov/minerals/pubs/commodity/bauxite/ Bauxite Residue Management: Best Practice. World aluminum, European aluminum association, April 2013 Burkin A R. Production of Aluminum and Alumina. Society of Chemical Industry. Hoboken: John Wiley and Sons, 1987 Prasad P M, Singh M. Problems in the disposal and utilization of red muds. Banaras Metallurgist, 1997, 14–15: 127–140 Staley A K. An investigation into the Pyrometallurgical and electrometallurgical extraction of iron from red mud generated in the processing of bauxite ores. Dissertation for the Doctoral Degree. Colorado: Colorado School of Mines, 2002 Samal S, Ray A, Bandopadhyay A. Proposal for resources, utilization and processes of red mud in India: A review. International Journal of Mineral Processing, 2013, 118: 43–55 Pontikes Y, Angelpoulos G. Bauxite residue in cement and cementitious applications: Current status and a possible way forward. Resources, Conservation and Recycling, 2013, 73: 53–63 Singh M, Upadhyay S N, Prasad P M. Preparation of iron rich cements using red mud. Cement and Concrete Research, 1997, 27(7): 1037–1046 Mishra C R, Yadav D, Sharma P S, Alli M M. Production of ordinary portland cement (OPC) from NALCO red mud. TMS (The Minerals, Metals and Materials Society). 2011, https://link.springer. com/chapter/10.1007%2F978-3-319-48160-9_17 Liu X, Zhang N. Utilization of red mud in cement production: A review. Waste Management & Research, 2010, 29(10): 1053–1063 Liu Q, Xin R, Li C, Xu C, Yang J. Application of red mud as a basic catalyst for biodiesel production. Journal of Environmental Sciences (China), 2013, 25(4): 823–829 Liang W, Couperthwaite S J, Kaur G, Yan C, Johnstone D W, Millar G J. Effect of strong acids on red mud structural and fluoride adsorption properties. Journal of Colloid and Interface Science, 2014, 423: 158–165 Liu Z, Li H. Metallurgical process for valuable elements recovery from red mud: A review. Hydrometallurgy, 2015, 155: 29–43 Hammond K, Mishra B, Apelian D, Blanpain B. CR3 Communication: Red mud — a resource or a waste? Journal of the Minerals Metals & Materials Society, 2013, 65(3): 340–341 Liu W, Yang J, Xiao B. Review on treatment and utilization of bauxite residues in China. International Journal of Mineral Processing, 2009, 93(3–4): 220–231 Liu W, Sun S, Zhang L, Jahanshahi S, Yang J. Experimental and simulative study on phase transformation in Bayer red mud sodalime roasting system and recovery of Al, Na and Fe. Minerals Engineering, 2012, 39: 213–218 Zhong L, Zhang Y, Yi Z. Extraction of alumina and sodium oxide from red mud by a mild hydro-chemical process. Journal of Hazardous Materials, 2009, 172(2–3): 1629–1634 Li H, Hui J, Wang C, Bao W, Sun Z. Removal of sodium (Na2O) from alumina extracted fly ash by a mild hydrothermal process. Hydrometallurgy, 2015, 153: 1–5 Vachon P, Tyagi R D, Auclair J C, Wilkinson K J. Chemical and biological leaching of aluminum from red mud. Environmental Science & Technology, 1994, 28(1): 26–30 Bruckard WJ, Calle C M, Davidson R H, Glenn A M, Jahanshahi S, Somerville MA, Sparrow G J, Zhang L. Smelting of bauxite residue to form a soluble sodium aluminum silicate phase to recover alumina and soda. Mineral Processing and Extractive Metallurgy Review, 2010, 119(1): 18–26 Li X, Xiao W, Liu W, Liu G, Peng Z, Zhou Q, Qi T. Recovery of alumina and ferric oxide from Bayer red mud rich in iron by reduction sintering. Transactions of Nonferrous Metallurgical Society, 2009, 19(5): 1342–1347 Zhou Q S, Fan K S, Li X B, Peng Z H, Liu G H. Alumina recovery from red mud with high iron by sintering process. Journal of Central South University Science and Technology, 2008, 39(1): 92–97 (in Chinese) Raspopov N V, Korneev V P, Averin V, Lainer Y A, Zinoneev D V, Dyubanov V G. Reduction of iron oxides during the Pyrometallurgical processing or red mud. Russian Metallurgy (Metally), 2013, 1(1): 33–37 Li G, Liu M, Rao M, Jiang T, Zhuang J, Zhang Y. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Journal of Hazardous Materials, 2014, 280: 774–780 Jamieson E, Jones A, Cooling D, Stockton N. Magnetic separation of red sand to produce value. Minerals Engineering, 2006, 19(15): 1603–1605 Zhu D, Jun T, Chun J, Zhen P. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. Journal of Iron and Steel Research International, 2012, 19(8): 1–5 Liu W, Yang J, Xiao B. Application of Bayer red mud for iron recovery and building material production from aluminosilicate residues. Journal of Hazardous Materials, 2009, 161(1): 474–478 Piga L, Pochetti F, Stoppa L. Recovery of metals from red mud generated during alumina production. JOM, 1993, 45(11): 54–59 Stickney WA, Butler MO, Mauser J E, Fursman O C. Utilization of red mud residues from alumina production. Washington: U.S. Department of Interior, Bureau of Mines, DC, 1970 Kumar R, Srivastava J P. Premchand. Utilization of iron values of red mud for metallurgical applications. Environmental and Waste Management, 1998, 108–119 Jayasankar K, Ray P K, Chaubey A K, Padhi A, Satapathy B K, Mukherjee P S. Production of pig iron from red mud waste fines usingthermal plasma technology. InternationalJournal of Minerals Metallurgy and Materials, 2012, 19(8): 679–684 Laguna C, González F, García-Balboa C, Ballester A, Blázquez M L, Muñoz J A. Bioreduction of iron compoundsas a possible clean environmental alternative for metal recovery. Minerals Engineering, 2011, 24(1): 10–18 Zhong L, Zhang Y, Zhang Y. Extraction of alumina and sodium oxidefrom red mud by a mild hydro-chemical process. Journal of Hazardous Materials, 2009, 172(2–3): 1629–1634 Guo Y, Guo J, Xu H, Zhao K, Shi X. Nuggests production by direct reductionof high iron red mud. Journal of Iron andSteel research, International, 2013, 20(5): 24–27 Samouhos M, Taxiarchou M, Tsakiridis P, Potiriadis K. Greek red mud residue: A study of microwave reductive roasting followed by magnetic separation for a metallic iron recovery process. Journal of Hazardous Materials, 2013, 254–255: 193–205 Li G, Liu M, Rao M, Jiang T, Zhuang J, Zhang Y. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. Journal of Hazardous Materials, 2014, 280: 774–780 Teplov O A, Lainer Y U. Rate of reduction of the iron oxides in red mud by hydrogen and converted gas. Russian Metallurgy (Metally), 2013, 1: 32–40 Caupain R. Low-temperature gas-phase carbidization of ironbearing constituents in red mud. Dissertation for the Master Degree. Colorado: Colorado School of Mines, 2004 Strausta K H. DD Patent, 120185-A, 1976-06-05 Vereinigte A W. FR Patent, 2.117.930-A, 1971-12-07 Wang J, Zhao P. Method of dealkalizing red mud and recovering aluminum and iron. Google patents, 2013 Agatzini-Leonardou S, Oustadakis P, Tsakiridis P E, Markopoulos C. Titanium leaching from red mud by diluted sulfuric acid at atmospheric pressure. Journal of Hazardous Materials, 2008, 157(2-3): 579–586 Erçag E, Apak R. Furnace smelting and extractive metallurgy of red mud: Recovery of TiO2, Al2O3 and pig iron. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1997, 70(3): 241–246 Mehta S, Patel S. Recovery of titania from the bauxite sludge. Journal of the American Chemical Society, 1951, 73(1): 226–227 Xiang Q, Liang X, Schlesinger M, Watson J. Low-temperature reduction of ferric iron in red mud. TMS (The Minerals, Metals and Materials Society). 2001, http://scholarsmine.mst.edu/matsci_eng_-facwork/582/ Liu Y, Zhao B, Tang Y, Wan P, Chen Y, Lv Z. Recycling of iron from red mud by magnetic separation after co-roasting with pyrite. Thermochimica Acta, 2014, 588: 11–15 Binnemans K, Jones P T, Blanpain B, Gerven T P, Pontikes Y. Towards zero waste valorization of rare earth-containing-industrial process residues: A critical review. Journal of Cleaner Production, 2015, 99: 17–38 Wagh A S, Pinnock W R. Occurrence of scandium and rare earth elements in Jamaican Bauxite waste. Economic Geology and the Bulletin of the Society of Economic Geologists, 1987, 82(3): 757–761 Borra C R, Pontikes Y, Binnemans K, Gerven T V. Leaching of rare earths from bauxite residue (red mud). Minerals Engineering, 2015, 76: 20–27 Wang W, Cheng C Y. Separation and purification of scandium by solvent extraction and related technologies: A review. Journal of Chemistry and Biotechnology, 2011, 86(10): 1237–1246 Yatsenko S P, Pyagai I N. Red mud pulp carbonization with scandium extraction during alumina production. Theoretical Foundations of Chemical Engineering, 2010, 44(4): 563–568