Materials selection for XL wind turbine support structures: A corrosion-fatigue perspective
Tài liệu tham khảo
WindPower, 2016
Caduff, 2012, Wind power electricity: the bigger the turbine, the greener the electricity?, Environ Sci Technol, 46, 4725, 10.1021/es204108n
Kallehave D., Byrne BBW., LeBlanc Thilsted C., Mikkelsen KK., Association EWE., Estate TC., et al. Optimization of monopiles for offshore wind turbines. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences. The Royal Society; 28 February 2015; 373(February 2015): 1–15. Available at: https://doi.org/10.1098/rsta.2014.0100 (Accessed: 29 July 2016).
OWPB, 2015, 1
OWPB, 2016
Baringa, 2017
Leblanc, 2010, Response of stiff piles in sand to long-term cyclic lateral loading, Geotechnique, 60, 79, 10.1680/geot.7.00196
Kallehave, 2015, Optimization of monopiles for offshore wind turbines. Philosophical transactions, Series A, Math Phys Eng Sci, 373, 1
Brennan, 2014, A framework for variable amplitude corrosion fatigue materials tests for offshore wind steel support structures, Fatig Fract Eng Mater Struct, 37, 717, 10.1111/ffe.12184
Bak, 2013
AMSC, 2012, 2
Polinder, 2007, 10 MW wind turbine direct-drive generator design with pitch or active speed stall control, vol. 2, 1390
Frøyd, 2011, Rotor design for a 10 MW offshore wind turbine, vol. 8, 327
4 Coffshore, 2016
TII Group-Scheuerle, 2016
Dillinger, 2017
Yu, 2015, Long-term dynamic behavior of monopile supported offshore wind turbines in sand, Theor Appl Mech Lett, 5, 80, 10.1016/j.taml.2015.02.003
(DNV) Det Norske Veritas, 2011
Bhattacharya, 2013, Observed dynamic soil-structure interaction in scale testing of offshore wind turbine foundations, Soil Dyn Earthquake Eng Elsevier, 54, 47, 10.1016/j.soildyn.2013.07.012
Lombardi, 2013, Dynamic soil-structure interaction of monopile supported wind turbines in cohesive soil, Soil Dyn Earthquake Eng Elsevier, 49, 165, 10.1016/j.soildyn.2013.01.015
Harte, 2012, Dynamic analysis of wind turbines including soil-structure interaction, Eng Struct, 45, 509, 10.1016/j.engstruct.2012.06.041
Bhattacharya, 2011, Experimental validation of soil-structure interaction of offshore wind turbines, Soil Dynam Earthq Eng, 31, 805, 10.1016/j.soildyn.2011.01.004
Bhattacharya, 2014, 1
Vestas Wind Systems A/S, 2005
Bhattacharya, 2013, Dynamics of offshore wind turbines supported on two foundations, Proc Inst Civ Eng Geotech Eng, 166, 159, 10.1680/geng.11.00015
Desmond, 2016, Description of an 8 MW reference wind turbine, J Phys Conf, 10.1088/1742-6596/753/9/092013
DNV/Risø, 2002
Thorpe, 1983, Corrosion fatigue of BS4360:50D structural-steel in seawater, Int J Fatig, 5, 123, 10.1016/0142-1123(83)90025-7
Milella, 2013, 529
World sea temperature, 2017
Vestas Wind Systems A/S, 2011, 8
Borgen, 2012, Drivetrain concepts for wind: introduction of the sway turbine ST10
Gillbert, 2012
Steel International T, 2010
Corus Construction & Industrial, 2004
Tata Steel, 2013
Parker Steel Company, 2012
Regency Steel Asia, 2016
Tata Steel International, 2010
Nippon Steel & Sumitomo Metal
MEADinfo, 2015
Dillinger, 2016
Jaske, 1978, Corrosion fatigue of structural steels in seawater and for offshore applications, 19
Ruukki, 2011
ASTM, 2015
Mehmanparast, 2017, Fatigue crack growth rates for offshore wind monopile weldments in air and seawater: SLIC inter-laboratory test results, Mater Des, 114, 494, 10.1016/j.matdes.2016.10.070
ASTM, 2013, D1141-98 standard practice for the preparation of substitute ocean water, Astm, 98, 1
Adedipe, 2015, Corrosion fatigue load frequency sensitivity analysis, Marine Struct, 42, 115, 10.1016/j.marstruc.2015.03.005
British Standards Institution, 2012
British Standard, 2008
Dhinakaran, 2014, Effect of low cyclic frequency on fatigue crack growth behavior of a Mn – Ni – Cr steel in air and 3. 5 % NaCl solution, Mater Sci Eng, A, 609, 204, 10.1016/j.msea.2014.05.001
Vishay, 2010
Vishay, 2014
Vishay, 2009
Vishay, 2010
Vishay, 2012
Vishay, 2005
TML, 2015
Vishay, 2015
BSI, 2012
Tavares, 2015
BSI Standards, 2015
Scott, 1983, Rate-determining processes for corrosion fatigue crack growth in ferritic steels in seawater, Corrosion Sci, 23, 559, 10.1016/0010-938X(83)90119-1
De Jesus, 2012, A comparison of the fatigue behavior between S355 and S690 steel grades, J Construct Steel Res, 79, 140, 10.1016/j.jcsr.2012.07.021
Tsay, 1999, Microstructures and fatigue crack growth of EH36 TMCP steel weldments, Int J Fatig, 21, 857, 10.1016/S0142-1123(99)00021-3