Materials for optical fiber lasers: A review

Applied Physics Reviews - Tập 5 Số 4 - 2018
Peter D. Dragic1,2, Maxime Cavillon3,4, John Ballato3,4
12Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29631, USA
2Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign 1 , Urbana, Illinois 61801, USA
31Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
4Department of Materials Science and Engineering, Clemson University 2 , Clemson, South Carolina 29631, USA

Tóm tắt

Over the past two decades, fiber laser technologies have matured to such an extent that they have captured a large portion of the commercial laser marketplace. Yet, there still is a seemingly unquenchable thirst for ever greater optical power to levels where certain deleterious light-matter interactions that limit continued power scaling become significant. In the past decade or so, the industry has focused mainly on waveguide engineering to overcome many of these hurdles. However, there is an emerging body of work emphasizing the enabling role of the material. In an effort to underpin these developments, this paper reviews the relevance of the material in high power fiber laser technologies. As the durable material-of-choice for the application, the discussion will mainly be limited to silicate host glasses. The discussion presented herein follows an outward path, starting with the trivalent rare earth ions and their spectroscopic properties. The ion then is placed into a host, whose impact on the spectroscopy is reviewed. Finally, adverse interactions between the laser lightwave and the host are discussed, and novel composition glass fiber design and fabrication methodologies are presented. With deference to the symbiosis required between material and waveguide engineering in active fiber development, this review will emphasize the former. Specifically, where appropriate, materials-based paths to the enhancement of laser performance will be underscored.

Từ khóa


Tài liệu tham khảo

See https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers for high power fiber laser product offerings from IPG Photonics, Oxford, MA, USA.

2008, Analysis of the scalability of diffraction-limited fibre lasers and amplifiers to high average power, Opt. Express, 16, 13240, 10.1364/OE.16.013240

2010, High power fibre lasers: Current status and future perspectives, J. Opt. Soc. Am. B, 27, B63, 10.1364/JOSAB.27.000B63

2012, Laser Phys., 22, 1744, 10.1134/S1054660X12110199

2013, High-power fibre lasers, Nat. Photonics, 7, 861, 10.1038/nphoton.2013.273

2013, Nat. Photonics, 7, 868, 10.1038/nphoton.2013.280

2014, Int. J. Mod. Phys. B, 28, 1442009, 10.1142/S0217979214420090

2014, High Power Fiber Lasers: A Review, IEEE J. Sel. Top. Quantum Electron., 20, 219, 10.1109/JSTQE.2014.2321279

2017, J. Opt. Soc. Am. B, 34, A49, 10.1364/JOSAB.34.000A49

2013, Proc. SPIE, 8601, 860115, 10.1117/12.2021808

2012, High-Power Lasers: Fibre lasers drill for oil, Laser Focus World, 12, 27

2017, Proc. SPIE, 10058, 1005808, 10.1117/12.2256015

2010, Appl. Opt., 49, 562, 10.1364/AO.49.000562

See https://www.ipgphotonics.com/en_uploads/widget/widget_item_pdf_704.pdf?_=751132596 for Industrial Laser Solutions, Fiber Lasers Technical Digest.

1999, IEEE Photonics Technol. Lett., 11, 1593, 10.1109/68.806857

2009, IEEE Sel. Top. Quantum Electron., 15, 451, 10.1109/JSTQE.2009.2012403

2017, Proc. SPIE, 10086, 1008605, 10.1117/12.2250656

Fujikura Tech. Rev., 2016, 42, 10.1049/piee.1966.0189

2012, High brightness fiber coupled modular diode laser platform

1966, Proc. IEE, 113, 1151

1977, J. Am. Ceram. Soc., 60, 418, 10.1111/j.1151-2916.1977.tb15525.x

1965, J. Am. Ceram. Soc., 48, 75, 10.1111/j.1151-2916.1965.tb11803.x

1973, J. Appl. Phys., 44, 5432, 10.1063/1.1662170

2005, J. Ceram. Soc. Jpn., 113, 325, 10.2109/jcersj.113.325

1991, J. Electrochem. Soc., 138, 2830, 10.1149/1.2086066

1962, J. Am. Ceram. Soc., 45, 422, 10.1111/j.1151-2916.1962.tb11186.x

2005, J. Lightwave Technol., 23, 3500, 10.1109/JLT.2005.855867

2011

2009, Inorg. Mater., 45, 444, 10.1134/S0020168509040220

1975, J. Am. Ceram. Soc., 58, 461, 10.1111/j.1151-2916.1975.tb19028.x

1969, J. Am. Ceram. Soc., 52, 17, 10.1111/j.1151-2916.1969.tb12653.x

1983, Electron. Lett., 19, 261, 10.1049/el:19830180

1995, Opt. Lett., 20, 1982, 10.1364/OL.20.001982

1978, Appl. Opt., 17, 1836, 10.1364/AO.17.001836

B. J. Cole and M. L. Dennis, “Heavy metal modified silica glass fibers doped with thulium, holmium, and thulium-sensitized-holmium high quantum efficiencies,” U.S. patent 6,667,257B2 (December 23, 2003).

2014, Fabrication and characterization of solution doped gallium and barium preforms, 116

2015, Appl. Opt., 54, 5508, 10.1364/AO.54.005508

1990, J. Lightwave Technol., 8, 1680, 10.1109/50.60565

S. K. Mishra, “Alkali and fluorine doped optical fiber,” U.S. patent 7,088,900B1 (August 8, 2006).

M. E. Lines, “SiO2-based alkali-doped optical fibe,” U.S. patent 5,146,534 (September 8, 1992).

J. B. MacChesney and J. R. Simpson, “Multicomponent optical fiber,” U.S. patent 4,666,247 (May 19, 1987).

2016, Phys. Status Solidi A, 213, 3039, 10.1002/pssa.201600301

J. B. MacChesney, J. R. Simpson, and K. L. Walker, “Doped optical fiber,” U.S. patent 4,616,901 (October 14, 1986).

1976, J. Am. Ceram. Soc., 59, 214, 10.1111/j.1151-2916.1976.tb10936.x

1974, J. Am. Ceram. Soc., 57, 309, 10.1111/j.1151-2916.1974.tb10908.x

1999, J. Non-Cryst. Solids, 259, 10, 10.1016/S0022-3093(99)00491-3

2000, Appl. Phys. Lett., 76, 807, 10.1063/1.125591

2005, Opt. Mater., 27, 1623, 10.1016/j.optmat.2004.05.009

See https://patents.google.com/?q=optical+fiber&q=composition&q=MCVD&oq=optical+fiber+composition+MCVD; accessed 25 January 2018.

1990, J. Am. Ceram. Soc., 73, 3537, 10.1111/j.1151-2916.1990.tb04256.x

2012, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards

2004, IEEE J. Sel. Top. Quantum Electron., 10, 300, 10.1109/JSTQE.2004.826570

1980, J. Am. Ceram. Soc., 63, 346, 10.1111/j.1151-2916.1980.tb10739.x

1975, J. Am. Ceram. Soc., 58, 330, 10.1111/j.1151-2916.1975.tb11490.x

1989, J. Appl. Phys., 65, 30, 10.1063/1.342542

2000, Opt. Commun., 185, 337, 10.1016/S0030-4018(00)01045-2

1993, 5

1974, J. Opt. Soc. Am., 64, 475, 10.1364/JOSA.64.000475

1976, Appl. Phys. Lett., 28, 516, 10.1063/1.88839

1985, Jpn. J. Appl. Phys., Part 1, 24, 1117, 10.1143/JJAP.24.1117

1994, Jpn. J. Appl. Phys., Part 2, 33, L233, 10.1143/JJAP.33.L233

1998, J. Non-Cryst. Solids, 239, 16, 10.1016/S0022-3093(98)00720-0

1981, J. Non-Cryst. Solids, 45, 235, 10.1016/0022-3093(81)90190-3

1985, J. Non-Cryst. Solids, 71, 133, 10.1016/0022-3093(85)90282-0

1989, Appl. Phys. Lett., 54, 1650, 10.1063/1.101396

1994, J. Non-Cryst. Solids, 179, 75, 10.1016/0022-3093(94)90686-6

1988, Phys. Rev. B, 38, 12772, 10.1103/PhysRevB.38.12772

2015, Luminescence from lanthanides-doped glasses and applications: A review

2005, Sci. Prog., 88, 101, 10.3184/003685005783238435

1993, J. Alloys Compd., 192, 17, 10.1016/0925-8388(93)90172-J

2015, Crit. Rev. Environ. Sci. Technol., 45, 749, 10.1080/10643389.2014.900240

2010, Materials, 3, 3777, 10.3390/ma3063777

2016, J. Rare Earths, 34, 341, 10.1016/S1002-0721(16)60034-0

Atwood, 2012, The Rare Earth Elements: Fundamentals and Applications

1941, Phys. Rev., 60, 184, 10.1103/PhysRev.60.184

Digonnet, 1993, Optical and electronic properties of rare earth ions in glasses, Rare Earth Doped Fiber Lasers and Amplifiers, 19

1925, Skrifter Norske Videnskaps-Akad. Oslo, I: Mat. Naturv. Kl. No. 7

1961, J. Inorg. Nucl. Chem., 17, 215, 10.1016/0022-1902(61)80142-5

1995, J. Phys. Chem., 99, 11687, 10.1021/j100030a011

2002, Inorg. Chem., 41, 167, 10.1021/ic015580v

2006, Chem. Phys. Lett., 429, 8, 10.1016/j.cplett.2006.07.094

1978, Optical Spectra of Transparent Rare Earth Compounds

1965, Spectroscopic Properties of Rare Earths

2004, Understanding Solids: The Science of Materials, 3

1963, Operator Techniques in Atomic Spectroscopy

1989, Optical Spectroscopy of Inorganic Solids

1991, Rare Earth Magnetism: Structures and Excitations

1963, Appl. Opt., 2, 675, 10.1364/AO.2.000675

1999, Opt. Mater., 13, 81, 10.1016/S0925-3467(99)00015-4

2014, J. Mater. Chem. C, 2, 5327, 10.1039/C4TC00585F

1980, J. Phys. Soc. Jpn., 49, 1449, 10.1143/JPSJ.49.1449

2005, An Introduction to the Optical Spectroscopy of Inorganic Solids

2012, Opt. Express, 20, 17539, 10.1364/OE.20.017539

2010, Appl. Opt., 49, 6236, 10.1364/AO.49.006236

2009, Proc. SPIE, 7325, 73250B, 10.1117/12.820814

2009, IEEE J. Sel. Top. Quantum Electron., 15, 85, 10.1109/JSTQE.2008.2010719

2007, Appl. Opt., 46, 8118, 10.1364/AO.46.008118

2017, Laser Phys. Lett., 14, 125101, 10.1088/1612-202X/aa8b80

2017, J. Opt. Soc. Am. B, 34, A29, 10.1364/JOSAB.34.000A29

2015, Opt. Express, 23, 2991, 10.1364/OE.23.002991

2014, Opt. Express, 22, 29067, 10.1364/OE.22.029067

2004, Opt. Commun., 230, 197, 10.1016/j.optcom.2003.11.045

1990, Electron. Lett., 26, 166, 10.1049/el:19900113

1992, Electron Lett., 28, 1243, 10.1049/el:19920785

1994, All solid state blue room temperature thulium-doped upconversion fiber laser,” in OSA Technical Digest Series

1995, J. Opt. Soc. Am. B, 12, 709, 10.1364/JOSAB.12.000709

1997, IEEE J. Sel. Top. Quantum Electron., 3, 1100, 10.1109/2944.649548

2010, Laser Phys., 20, 1990, 10.1134/S1054660X10210048

1989, Electron. Lett., 25, 1660, 10.1049/el:19891113

1994, Electron. Lett., 30, 136, 10.1049/el:19940077

1994, Erbium-Doped Fiber Amplifiers: Principles and Applications

2001, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed

1999, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology

1991, Appl. Opt., 30, 2546, 10.1364/AO.30.002546

1990, Appl. Phys. Lett., 56, 2607, 10.1063/1.102852

1990, IEEE Photonics Technol. Lett., 2, 153, 10.1109/68.50872

2000, IEEE J. Sel. Top. Quantum Electron., 6, 1008, 10.1109/2944.902149

1990, Electron. Lett., 26, 1038, 10.1049/el:19900673

1989, Opt. Lett., 14, 1266, 10.1364/OL.14.001266

2009, Proc. SPIE, 7325, 73250A, 10.1117/12.820802

2011, Opt. Express, 19, 5574, 10.1364/OE.19.005574

1989, Opt. Lett., 14, 1062, 10.1364/OL.14.001062

1991, IEEE Photonics Technol. Lett., 3, 619, 10.1109/68.87932

1995, J. Lightwave Technol., 13, 341, 10.1109/50.372427

2009, J. Appl. Phys., 106, 083108, 10.1063/1.3248369

1991, Electron. Lett., 27, 1785, 10.1049/el:19911110

1992, Electron. Lett., 28, 111, 10.1049/el:19920068

1914, Ann. Phys., 348, 965, 10.1002/andp.19143480702

1937, J. Phys. Chem., 41, 67, 10.1021/j150379a006

1976, J. Lumin., 12-13, 729, 10.1016/0022-2313(76)90168-X

2013, New J. Phys., 15, 053033, 10.1088/1367-2630/15/5/053033

2015, Opt. Express, 23, 1505, 10.1364/OE.23.001505

2009, IEEE J. Quantum Electron., 45, 1213, 10.1109/JQE.2009.2020607

2007, J. Opt. Soc. Am. B, 24, 2454, 10.1364/JOSAB.24.002454

1991, Opt. Lett., 16, 1089, 10.1364/OL.16.001089

1999, IEEE J. Quantum Electron., 35, 101, 10.1109/3.737626

1995, Appl. Phys. B, 61, 151, 10.1007/BF01090936

1992, IEEE J. Quantum Electron., 28, 2619, 10.1109/3.161321

1990, IEEE Photonics Technol. Lett., 2, 653, 10.1109/68.59340

2013, Opt. Commun., 288, 97, 10.1016/j.optcom.2012.10.004

2011, Laser Phys. Lett., 8, 305, 10.1002/lapl.201010138

1962, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750

1962, J. Chem. Phys., 37, 511, 10.1063/1.1701366

1966, Phys. Rev., 145, 325, 10.1103/PhysRev.145.325

1968, Phys. Rev., 171, 283, 10.1103/PhysRev.171.283

1971, IEEE J. Quantum Electron., 7, 153, 10.1109/JQE.1971.1076623

1971, J. Appl. Phys., 42, 4996, 10.1063/1.1659885

1974, IEEE J. Quantum Electron., 10, 450, 10.1109/JQE.1974.1068162

1983, J. Less-Common Met., 93, 107, 10.1016/0022-5088(83)90454-X

1992, Phys. Rev. B, 46, 3305, 10.1103/PhysRevB.46.3305

1994, J. Appl. Phys., 76, 3730, 10.1063/1.357444

1995, J. Am. Ceram. Soc., 78, 1161, 10.1111/j.1151-2916.1995.tb08463.x

1993, J. Am. Ceram. Soc., 76, 3081, 10.1111/j.1151-2916.1993.tb06612.x

Cotton, 1962, The nephelauxetic series, Progress in Inorganic Chemistry, 73

1965, Mol. Phys., 10, 7, 10.1080/00268976600100021

1974, Mol. Phys., 28, 415, 10.1080/00268977400102941

Di Bartolo, 1987, Glass lasers and solar applications, Spectroscopy of Solid-State Laser-Type Materials, 343, 10.1007/978-1-4613-0899-7

1967, Phys. Rev., 157, 262, 10.1103/PhysRev.157.262

1968, J. Chem. Phys., 49, 4424, 10.1063/1.1669893

1977, Chem. Phys. Lett., 49, 49, 10.1016/0009-2614(77)80439-9

1962, Phys. Rev., 128, 2154, 10.1103/PhysRev.128.2154

2004, J. Non-Cryst. Solids, 336, 102, 10.1016/j.jnoncrysol.2004.01.009

1995, Laser Electronics, 3rd ed.

2016, Photonics: An Introduction

Di Bartolo, 2006, Judd-Ofelt theory: Principles and practices, Advances in Spectroscopy for Lasers and Sensing, 403, 10.1007/1-4020-4789-4

1964, Phys. Rev., 134, A299, 10.1103/PhysRev.134.A299

1994, J. Lightwave Technol., 12, 803, 10.1109/50.293972

1968, J. Chem. Phys., 49, 4412, 10.1063/1.1669892

2012, Nat. Commun., 3, 979, 10.1038/ncomms1984

1998, J. Appl. Phys., 83, 2772, 10.1063/1.367037

2001, J. Opt. Soc. Am. B, 18, 602, 10.1364/JOSAB.18.000602

2015, AIMS Mater. Sci., 2, 37, 10.3934/matersci.2015.2.37

2012, Phys. Rev. B, 86, 125102, 10.1103/PhysRevB.86.125102

1977, Phys. Rev. B, 16, 10, 10.1103/PhysRevB.16.10

1977, Chem. Phys. Lett., 49, 251, 10.1016/0009-2614(77)80580-0

Gschneidner, 1987, Excited state phenomena in vitreous materials, Handbook on the Physics and Chemistry of Rare Earths

1986, J. Appl. Phys., 59, 3430, 10.1063/1.336810

See https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=336 for details on this fiber.

2018, Opt. Mater. Express, 8, 744, 10.1364/OME.8.000744

1999, Opt. Lett., 24, 1041, 10.1364/OL.24.001041

2018

2012, Thermal characteristics of ytterbium-doped phosphosilicate fiber amplifiers

Ytterbium lasers based on P2O5- and Al2O3-doped fibers

1995, Phys. Rev. B, 52, 15889, 10.1103/PhysRevB.52.15889

2008, Proc. SPIE, 6890, 689016, 10.1117/12.762967

2015, Opt. Mater. Express, 5, 742, 10.1364/OME.5.000742

2006, Mater. Res., 9, 21, 10.1590/S1516-14392006000100005

2005, Opt. Mater., 27, 1576, 10.1016/j.optmat.2005.04.006

1983, IEEE J. Quantum Electron., 19, 1600, 10.1109/JQE.1983.1071751

2008, Mater. Chem. Phys., 107, 488, 10.1016/j.matchemphys.2007.08.019

2017, J. Alloys Compd., 695, 2339, 10.1016/j.jallcom.2016.11.104

2012, Opt. Mater., 34, 1294, 10.1016/j.optmat.2012.02.019

2015, Proc. SPIE, 9513, 95130S, 10.1117/12.2182067

2014, Laser Phys. Lett., 11, 115811, 10.1088/1612-2011/11/11/115811

2002, J. Appl. Phys., 91, 576, 10.1063/1.1425445

2017, Opt. Express, 25, 25960, 10.1364/OE.25.025960

1991, J. Lightwave Technol., 9, 234, 10.1109/50.65882

1991, J. Lighwave Technol., 9, 220, 10.1109/50.65880

2015, Opt. Mater. Express, 5, 1689, 10.1364/OME.5.001689

2006, Opt. Mater., 28, 1271, 10.1016/j.optmat.2006.02.014

2015, Sci. Rep., 5, 10676, 10.1038/srep10676

2014, Advances in Electrical and Electronic Engineering, 12, 582, 10.15598/aeee.v12i6.1194

2016, Sci. Rep., 6, 20344, 10.1038/srep20344

2008, J. Appl. Phys., 103, 093104, 10.1063/1.2912952

2014, Sci. Rep., 4, 5256, 10.1038/srep05256

2003, Opt. Mater., 24, 563, 10.1016/S0925-3467(03)00144-7

2012, J. Lumin., 132, 1830, 10.1016/j.jlumin.2012.02.022

2011, Opt. Eng., 50, 111605, 10.1117/1.3613944

1994, Opt. Commun., 111, 310, 10.1016/0030-4018(94)90471-5

2006, J. Opt. Soc. Am. B, 23, 2581, 10.1364/JOSAB.23.002581

1997, J. Lumin., 71, 137, 10.1016/S0022-2313(96)00128-7

2011, Opt. Express, 19, 13940, 10.1364/OE.19.013940

2009, Proc. SPIE, 7193, 71931U, 10.1117/12.808767

2003, Proc. SPIE, 4974, 220, 10.1117/12.501679

2000, IEEE J. Quantum Electron., 36, 1000, 10.1109/3.853562

C. Xia, “Concentration quenching effect in rare-earth doped glasses,” thesis (University of Arizona, 2017).

2001, Opt. Mater., 16, 93, 10.1016/S0925-3467(00)00064-1

2006, Appl. Phys. Lett., 88, 161106, 10.1063/1.2196053

2003, J. Phys.: Condens. Matter, 15, 4877, 10.1088/0953-8984/15/27/319

1993, IEEE Photonics Technol. Lett., 5, 73, 10.1109/68.185065

2018

2001, J. Non-Cryst. Solids, 284, 288, 10.1016/S0022-3093(01)00425-2

2017, Opt. Mater., 68, 24, 10.1016/j.optmat.2016.11.042

2012, Sci. Adv. Mater., 4, 292, 10.1166/sam.2012.1284

2010, Opt. Commun., 283, 3423, 10.1016/j.optcom.2010.04.093

2012, IEEE Photonics Technol. Lett., 24, 679, 10.1109/LPT.2012.2186437

2012, J. Lightwave Technol., 30, 2062, 10.1109/JLT.2012.2191391

2011, Opt. Express, 19, 14823, 10.1364/OE.19.014823

2017, Nanoscale Res. Lett., 12, 206, 10.1186/s11671-017-1947-6

2009, Glass Technol. – European Journal of Glass Science and Technology Part A, 50, 79

2009, Appl. Opt., 48, G119, 10.1364/AO.48.00G119

2017, Opt. Express, 25, 13903, 10.1364/OE.25.013903

2017, Am. J. Appl. Sci., 14, 150, 10.3844/ajassp.2017.150.156

2016, Curr. Nanosci., 12, 277, 10.2174/1573413711666150624170638

2017, Fibers, 5, 11, 10.3390/fib5010011

2014, Opt. Express, 22, 25976, 10.1364/OE.22.025976

2013, Chin. Phys. Lett., 30, 034204, 10.1088/0256-307X/30/3/034204

2012

1993, Electron. Lett., 29, 1054, 10.1049/el:19930703

1997, Opt. Lett., 22, 694, 10.1364/OL.22.000694

1998, J. Lightwave Technol., 16, 1990, 10.1109/50.730360

2014, J. Lumin., 148, 249, 10.1016/j.jlumin.2013.12.008

2017, Opt. Mater. Express, 7, 1708, 10.1364/OME.7.001708

2001, Furukawa Rev., 20, 41

2015, Opt. Mater., 42, 270, 10.1016/j.optmat.2014.12.045

2008, Opt. Express, 16, 13781, 10.1364/OE.16.013781

2017, Indon. J. Electr. Eng. Comp. Sci., 8, 457

2013, Proc. SPIE, 8601, 86012X, 10.1117/12.2004420

2006, IEEE Photonics Technol. Lett., 18, 1609, 10.1109/LPT.2006.879584

2007, IEEE J. Sel. Top. Quantum Electron., 13, 573, 10.1109/JSTQE.2007.897178

2007, Fundamentals of Photonics, 2nd ed, 325

2006, Photonics and Lasers: An Introduction, 495, 10.1002/0471791598.app1

See https://www.lumentum.com/en/optical-communications/products/pump-lasers for examples of these pump lasers offered by Lumentum, Milpitas, CA, USA.

1989, Double clad high brightness Nd fiber laser pumped by GaAlAs phased array

1988, Double clad, offset core Nd fiber laser

2011, Opt. Eng., 50, 111607, 10.1117/1.3615653

2004, Opt. Fiber Technol., 10, 5, 10.1016/j.yofte.2003.07.001

1990, Proc. SPIE, 1177, 257, 10.1117/12.963341

2017, Proc. SPIE, 10083, 1008315, 10.1117/12.2252091

2011, Recent advances in MMF technology for data networks

2014, WideBand OM4 multi-mode fiber for next-generation 400 Gbps data communications

2005, Opt. Commun., 247, 153, 10.1016/j.optcom.2004.11.037

1974, IEEE J. Quantum Electron., QE-10, 879, 10.1109/JQE.1974.1068118

1976, Appl. Opt., 15, 1121, 10.1364/AO.15.001121

2006, Opt. Express, 14, 5103, 10.1364/OE.14.005103

2015, IEEE Photonics J., 7, 1500109, 10.1109/JPHOT.2014.2381656

2011, Laser Phys., 21, 948, 10.1134/S1054660X11090052

2017, Fiber Lasers: Basics, Technology, and Applications, 199

2017, J. Opt. Soc. Am. B, 34, 764, 10.1364/JOSAB.34.000764

2017, Appl. Phys. Express, 10, 032103, 10.7567/APEX.10.032103

2010, Supercontinuum Generation in Optical Fibers

2006, Proc. SPIE, 6343, 63430X, 10.1117/12.707712

2010, J. Lightwave Technol., 28, 3212

2007, Robustly single-mode polarization maintaining Er/Yb Co-doped LMA fiber for high power applications

2013, 1.0 μm co-seeded Er:Yb fiber amplifier with 50 W output power at 1.5 μm

2007, Proc. SPIE, 6453, 645308, 10.1117/12.699075

2007, J. Opt. Soc. Am. B, 24, 1677, 10.1364/JOSAB.24.001677

2003, J. Opt. Soc. Am. A, 20, 1617, 10.1364/JOSAA.20.001617

2008, Appl. Phys. B, 90, 369, 10.1007/s00340-008-2947-0

2011, J. Opt. Soc. Am. B, 28, 2430, 10.1364/JOSAB.28.002430

2017, Appl. Opt., 56, 8169, 10.1364/AO.56.008169

2011, J. Opt. Soc. Am. B, 28, 1498, 10.1364/JOSAB.28.001498

2012, Opt. Express, 20, 3296, 10.1364/OE.20.003296

2015, Opt. Express, 23, 7407, 10.1364/OE.23.007407

2016, Ytterbium-doped 30/400 LMA fibers with a record-low ∼NA of 0.028

2000, Opt. Lett., 25, 442, 10.1364/OL.25.000442

2009, J. Lighwave Technol., 27, 3010, 10.1109/JLT.2009.2020682

2007

2014, Opt. Express, 22, 9206, 10.1364/OE.22.009206

1996, Opt. Lett., 21, 1547, 10.1364/OL.21.001547

2007, J. Opt. Soc. Am. B, 24, 1661, 10.1364/JOSAB.24.001661

2003, Opt. Express, 11, 48, 10.1364/OE.11.000048

2007, Opt. Express, 15, 16787, 10.1364/OE.15.016787

2011, Opt. Eng., 50, 111609, 10.1117/1.3631872

2003, Opt. Express, 11, 818, 10.1364/OE.11.000818

2008, Opt. Express, 16, 3918, 10.1364/OE.16.003918

2006, Opt. Express, 14, 11512, 10.1364/OE.14.011512

Yasin, 2015, Advanced Optical Fibers for High Power Fiber Lasers, Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, 221

2010, Opt. Express, 18, 17651, 10.1364/OE.18.017651

1989, Advanced Engineering Electromagnetics, 470

1830, Bull. Sci. Math., 14, 6

1836, Mémoire Sur la Dispersion de la Lumière

1871, Ann. Phys., 219, 272, 10.1002/andp.18712190612

1997, Appl. Opt., 36, 1540, 10.1364/AO.36.001540

2004, Opt. Mater., 26, 235, 10.1016/j.optmat.2003.10.006

2014, Proc. SPIE, 9131, 91310H, 10.1117/12.2052706

1984, Appl. Opt., 23, 4477, 10.1364/AO.23.004477

1998, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, 5

Musikant, 1990, Optical fiber materials, Optical Materials, a Series of Advances, 147

See https://refractiveindex.info for a very nice refractive index calculator for a wide range of materials.

1978, Opt. Quantum Electron., 10, 163, 10.1007/BF00620007

1984, Appl. Opt., 23, 4486, 10.1364/AO.23.004486

2018, Int. J. Appl. Glass Sci., 9, 421, 10.1111/ijag.12337

1989, J. Non-Cryst. Solids, 113, 58, 10.1016/0022-3093(89)90318-9

1996, Opt. Fiber Technol., 2, 387, 10.1006/ofte.1996.0044

2009, Opt. Lett., 34, 3355, 10.1364/OL.34.003355

2015, Opt. Lett., 40, 5030, 10.1364/OL.40.005030

1995, Nonlinear Fiber Optics, 2nd ed

2017, New J. Phys., 19, 011003, 10.1088/1367-2630/aa5447

2010, Adv. Opt. Photonics, 2, 1, 10.1364/AOP.2.000001

1990, Phys. Rev. A, 42, 5514, 10.1103/PhysRevA.42.5514

1991, Phys. Rev. B, 44, 4281, 10.1103/PhysRevB.44.4281

1992, Nonlinear Optics

1972, Appl. Opt., 11, 2489, 10.1364/AO.11.002489

1994, IEEE J. Quantum Electron., 30, 1817, 10.1109/3.301646

2011, Opt. Express, 19, 8394, 10.1364/OE.19.008394

2014, J. Opt. Soc. Am. B, 31, 2809, 10.1364/JOSAB.31.002809

See https://www.thorlabs.com/catalogpages/1074.pdf for the software package offered by Thorlabs, Newton, NJ, USA.

See https://www.rp-photonics.com/software.html for the software package offered by RP Photonics, Bad Dürrheim, Germany.

1986, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, UFFC-33, 59, 10.1109/T-UFFC.1986.26797

1985, Proc. IEEE Ultrason. Symp., 2, 1128, 10.1109/ULTSYM.1985.198693

1989, IEEE J. Lightwave Technol., 7, 2018, 10.1109/50.41623

1988, Electron. Lett., 24, 1419, 10.1049/el:19880969

2009, Opt. Lett., 34, 3689, 10.1364/OL.34.003689

1988, Opt. Lett., 13, 595, 10.1364/OL.13.000595

1989, J. Opt. Soc. Am. B, 6, 1167, 10.1364/JOSAB.6.001167

2012, Microw. Opt. Technol. Lett., 54, 2347, 10.1002/mop.27049

1986, IEE Proc. J. Optoelectron., 133, 256, 10.1049/ip-j.1986.0041

2008, Opt. Express, 16, 15970, 10.1364/OE.16.015970

2013, Opt. Mater., 35, 1627, 10.1016/j.optmat.2013.04.006

2015, Laser Phys., 25, 085101, 10.1088/1054-660X/25/8/085101

2017, Opt. Express, 25, 14892, 10.1364/OE.25.014892

2018, Proc. SPIE, 10512, 105120E, 10.1117/12.2291100

2018, Proc. SPIE, 10512, 105122S, 10.1117/12.2291423

2013, Opt. Express, 21, 4677, 10.1364/OE.21.004677

2017, Appl. Opt., 56, B116, 10.1364/AO.56.00B116

1993, J. Am. Ceram. Soc., 76, 3073, 10.1111/j.1151-2916.1993.tb06611.x

1970, J. Acoust. Soc. Am., 48, 1086, 10.1121/1.1912247

2010, Opt. Express, 18, 18852, 10.1364/OE.18.018852

2016, J. Non-Cryst. Solids, 433, 82, 10.1016/j.jnoncrysol.2015.11.027

2014, High Power Laser Sci. Eng., 2, e3, 10.1017/hpl.2014.2

2011, Opt. Lett., 36, 2293, 10.1364/OL.36.002293

2016, Kilowatt-class, all-fiber amplifiers for beam combining, SPIE Newsroom

1995, Electron. Lett., 31, 668, 10.1049/el:19950418

2017, Photonics Res., 5, 233, 10.1364/PRJ.5.000233

1993, J. Lightwave Technol., 11, 1941, 10.1109/50.257954

2013, Opt. Fiber Technol., 19, 432, 10.1016/j.yofte.2013.05.010

2001, J. Lighwave Technol., 19, 1691, 10.1109/50.964069

2007, Opt. Express, 15, 977, 10.1364/OE.15.000977

1991, Electron. Lett., 27, 1100, 10.1049/el:19910683

2014, Appl. Opt., 53, 4413, 10.1364/AO.53.004413

2008, Proc. SPIE, 6873, 68730O, 10.1117/12.774714

2010, Brillouin suppression by fiber design

2013, Opt. Mater. Express, 3, 511, 10.1364/OME.3.000511

2005, Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression, 1984

2006, Fiber designs for reducing stimulated Brillouin scattering

2009, IEEE J. Sel. Top. Quantum Electron., 15, 37, 10.1109/JSTQE.2008.2010240

2010, Proc. SPIE, 7580, 75801G, 10.1117/12.847926

2010, J. Lightwave Technol., 21, 3156

2011, J. Lightwave Technol., 29, 967, 10.1109/JLT.2011.2107502

2013, J. Am. Ceram. Soc., 96, 2675, 10.1111/jace.12516

2014, Materials, 7, 4411, 10.3390/ma7064411

2018, Int. J. Appl. Glass Sci., 9, 263, 10.1111/ijag.12327

2012, Nat. Photonics, 6, 627, 10.1038/nphoton.2012.182

2014, Appl. Opt., 53, 5660, 10.1364/AO.53.005660

2013, Opt. Express, 21, 10924, 10.1364/OE.21.010924

2016, J. Lightwave Technol., 34, 1435, 10.1109/JLT.2015.2508452

2015, Int. J. Appl. Glass Sci., 6, 387, 10.1111/ijag.12146

2009, J. Appl. Phys., 105, 053110, 10.1063/1.3080135

1987, J. Appl. Phys., 62, 4363, 10.1063/1.339069

1985, J. Non-Cryst. Solids, 71, 373, 10.1016/0022-3093(85)90308-4

1976, Phys. Rev. Lett., 37, 1474, 10.1103/PhysRevLett.37.1474

1979, Phys. Rev. B, 19, 4292, 10.1103/PhysRevB.19.4292

2018, Proc. SPIE, 10512, 105121I, 10.1117/12.2289511

2010, Opt. Lett., 35, 2982, 10.1364/OL.35.002982

2006, Suppression of stimulated Raman scattering in a cladding pumped amplifier with an Yb-doped filter fiber

2018, IEEE J. Sel. Top. Quantum Electron., 24, 0901509, 10.1109/JSTQE.2017.2773613

2011, Opt. Express, 19, 22575, 10.1364/OE.19.022575

2005, Opt. Commun., 250, 403, 10.1016/j.optcom.2005.02.048

2010, Proc. SPIE, 7580, 758012, 10.1117/12.840892

2006, Opt. Lett., 31, 2290, 10.1364/OL.31.002290

2015, Proc. SPIE, 9344, 93440U, 10.1117/12.2086852

2015, Appl. Sci., 5, 1323, 10.3390/app5041323

2016, Opt. Express, 24, 6758, 10.1364/OE.24.006758

1975, Appl. Spectrosc., 29, 337, 10.1366/000370275774455969

1978, Appl. Phys. Lett., 32, 34, 10.1063/1.89823

2013, Electron. Lett., 49, 895, 10.1049/el.2013.1386

1995, Opt. Lett., 20, 2279, 10.1364/OL.20.002279

2015, Opt. Express, 23, 29764, 10.1364/OE.23.029764

2008, Appl. Phys. Lett., 92, 181108, 10.1063/1.2917470

2009, Proc. SPIE, 7195, 71952N, 10.1117/12.809957

2002, Electron. Lett., 38, 1578, 10.1049/el:20021050

2013, Appl. Opt., 52, 7331, 10.1364/AO.52.007331

1988, Laser Diode Modulation and Noise

2010, Opt. Lett., 35, 1542, 10.1364/OL.35.001542

2014, IEEE J. Sel. Top. Quantum Electron., 20, 0901008, 10.1109/JSTQE.2013.2296771

2017, Proc. SPIE, 10083, 100830S, 10.1117/12.2255019

2018, Nonlinear characterization of a Kolowatt-class amplifier based on laser gain competition

1989, Phys. Rev. B, 39, 3337, 10.1103/PhysRevB.39.3337

2002, IEEE Photonics Technol. Lett., 14, 492, 10.1109/68.992588

1987, J. Opt. Soc. Am. B, 4, 875, 10.1364/JOSAB.4.000875

2009, IEEE Sel. Top. Quantum Electron., 15, 153, 10.1109/JSTQE.2008.2010331

1999, Appl. Opt., 38, 2510, 10.1364/AO.38.002510

2006, Opt. Lett., 31, 3423, 10.1364/OL.31.003423

2007, Opt. Commun., 280, 424, 10.1016/j.optcom.2007.08.040

2007, Opt. Lett., 32, 1551, 10.1364/OL.32.001551

2008, Opt. Express, 16, 2431, 10.1364/OE.16.002431

2011, Opt. Express, 19, 3258, 10.1364/OE.19.003258

2011, Opt. Express, 19, 10180, 10.1364/OE.19.010180

A. V. Smith and J. J. Smith, “Review of models of mode instability in fiber amplifiers,” https://pdfs.semanticscholar.org/023b/8b994407852d360f1ad6ae4312bc9fca02d1.pdf

2014, IEEE J. Sel. Top. Quantum Electron., 20, 0903512, 10.1109/JSTQE.2014.2310657

2017, Fiber Lasers: Basics, Technology, and Applications, 50

2011, Opt. Express, 19, 13218, 10.1364/OE.19.013218

2013, Opt. Express, 21, 2642, 10.1364/OE.21.002642

2018, High Power Laser Sci. Eng., 6, e16, 10.1017/hpl.2018.9

2018, Proc. SPIE, 10512, 105121Z, 10.1117/12.2289104

2017, Photonics Res., 5, 77, 10.1364/PRJ.5.000077

2017, Proc. SPIE, 10083, 10083311, 10.1117/12.2251261

2018, Proc. SPIE, 10512, 105120F, 10.1117/12.2291253

2017, Opt. Mater. Express, 7, 3654, 10.1364/OME.7.003654

2018, Tailoring the thermo-optic coefficient in silica optical fibers

2016, Opt. Express, 24, 19841, 10.1364/OE.24.019841

2001, IEEE J. Quantum Electron., 37, 207, 10.1109/3.903070

2017, Int. J. Appl. Glass Sci., 9, 278, 10.1111/ijag.12328

2018, Int. J. Appl. Glass Sci., 9, 307, 10.1111/ijag.12329

1988, Mathematical Approach to Glass

2018, Int. J. Appl. Glass Sci., 9, 447, 10.1111/ijag.12336

2009, Electron. Lett., 45, 256, 10.1049/el:20093739

2010, Int. J. Appl. Glass Sci., 1, 330, 10.1111/j.2041-1294.2010.00025.x

2009, J. Non-Cryst. Solids, 355, 403, 10.1016/j.jnoncrysol.2009.01.005

2013, J. Opt. Soc. Am. B, 30, 244, 10.1364/JOSAB.30.000244

1988, J. Lightwave Technol., 6, 17, 10.1109/50.3956

1987, Chem. Geol., 62, 111, 10.1016/0009-2541(87)90062-3

1894, Ann. Phys. Chem., 51, 730

1927, J. Am. Ceram. Soc., 10, 551, 10.1111/j.1151-2916.1927.tb16425.x

1930, J. Am. Ceram. Soc., 13, 182, 10.1111/j.1151-2916.1930.tb16561.x

1934, Verre Silic. Ind., 5, 122

2001, Phys. Chem. Glass, 42, 158

2017, Opt. Lett., 42, 3650, 10.1364/OL.42.003650

1985, Electron. Commun. Jpn., 68, 37, 10.1002/ecjb.4420680305

1982, Appl. Opt., 21, 4223, 10.1364/AO.21.004223

2015, Optica, 2, 313, 10.1364/OPTICA.2.000313

2016, Int. J. Appl. Glass Sci., 7, 3, 10.1111/ijag.12137

2006, Opt. Lett., 31, 161, 10.1364/OL.31.000161

2016, Int. J. Appl. Glass Sci., 7, 11, 10.1111/ijag.12141

2017, Appl. Phys. Lett., 111, 221901, 10.1063/1.5005822

2012, Opt. Mater. Express, 2, 1641, 10.1364/OME.2.001641

1997, Physics and Chemistry of Photochromic Glasses

1983, Sov. J. Glass Phys. Chem., 9, 229

2006, Proc. SPIE, 6116, 61160G, 10.1117/12.660405

1988, Electron. Lett., 24, 590, 10.1049/el:19880400

1993, Opt. Lett., 18, 799, 10.1364/OL.18.000799

1994, Opt. Lett., 19, 874, 10.1364/OL.19.000874

1997, Opt. Commun., 136, 375, 10.1016/S0030-4018(96)00720-1

2005, Proc. SPIE, 5990, 599008, 10.1117/12.630499

2006, Opt. Express, 14, 11539, 10.1364/OE.14.011539

2008, Appl. Opt., 47, 1247, 10.1364/AO.47.001247

2008

2009, Proc. SPIE, 7195, 71952D, 10.1117/12.809182

2007, Proc. SPIE, 6453, 64531E, 10.1117/12.712545

2011, Opt. Express, 19, 19340, 10.1364/OE.19.019340

2011, Proc. SPIE, 7914, 79140L, 10.1117/12.877868

2009, Appl. Phys. Lett., 95, 051908, 10.1063/1.3197631

2007, Opt. Express, 15, 14838, 10.1364/OE.15.014838

1995, Appl. Opt., 34, 3436, 10.1364/AO.34.003436

2010, Proc. SPIE, 7580, 75801Y, 10.1117/12.840026

2006

2009, Opt. Lett., 34, 109, 10.1364/OL.34.000109

2009, Proc. SPIE, 7195, 71952C, 10.1117/12.808189

2007

2010, Opt. Express, 18, 20455, 10.1364/OE.18.020455

2012, Proc. SPIE, 8257, 825705, 10.1117/12.914613

2012, J. Appl. Phys., 112, 093511, 10.1063/1.4761973

2011, Opt. Express, 19, 14473, 10.1364/OE.19.014473

2017, J. Light Technol., 35, 2535, 10.1109/JLT.2017.2690383

2013, Opt. Express, 21, 7590, 10.1364/OE.21.007590

2006

2007, Opt. Lett., 32, 3352, 10.1364/OL.32.003352

2008, Opt. Express, 16, 1260, 10.1364/OE.16.001260

2009, Opt. Lett., 34, 1285, 10.1364/OL.34.001285

2010, J. Opt. Soc. Am. B, 27, 338, 10.1364/JOSAB.27.000338

2016, Appl. Phys. A, 122, 75, 10.1007/s00339-015-9576-3

2016, Opt. Express, 24, 13009, 10.1364/OE.24.013009

2013

2013, Opt. Express, 21, 6681, 10.1364/OE.21.006681

2014, J. Mater. Chem. C, 2, 4406, 10.1039/C3TC32576H

1963, J. Chem. Phys., 39, 3251, 10.1063/1.1734186

2007, Laser Phys. Lett., 4, 734, 10.1002/lapl.200710053

2008, Fujikura Giho, 115, 6

2011, Proc. SPIE, 7914, 79140K, 10.1117/12.879800

2013, Opt. Express, 21, 8382, 10.1364/OE.21.008382

2007, Opt. Lett., 32, 1626, 10.1364/OL.32.001626

1986, Color Centers in Glass Optical Fiber Waveguides, 319

1989, Opt. Lett., 14, 1023, 10.1364/OL.14.001023

1988, Opt. Lett., 13, 1023, 10.1364/OL.13.001023

2010, J. Opt. Soc. Am. B, 27, 2087, 10.1364/JOSAB.27.002087

2012, Opt. Express, 20, 14494, 10.1364/OE.20.014494

2008, Opt. Express, 16, 4688, 10.1364/OE.16.004688

2008, IEEE Photonics Technol. Lett., 20, 1760, 10.1109/LPT.2008.2004679

2011, Opt. Express, 19, 19797, 10.1364/OE.19.019797

2008, Electron. Lett., 44, 14, 10.1049/el:20082698

2012, Appl. Opt., 51, 7758, 10.1364/AO.51.007758

2008

2009, Opt. Express, 17, 9924, 10.1364/OE.17.009924

2008, Proc. SPIE, 6873, 68731G, 10.1117/12.776638

2008, Opt. Express, 16, 15540, 10.1364/OE.16.015540

2012, J. Chem. Phys., 136, 014503, 10.1063/1.3673792

2000, J. Alloys Comp., 300-301, 443, 10.1016/S0925-8388(99)00760-4

2018, Opt. Mater. Express, 8, 385, 10.1364/OME.8.000385

2016, Proc. SPIE, 9728, 97281C, 10.1117/12.2209610

2018, IEEE Photonics Technol. Lett., 30, 127, 10.1109/LPT.2017.2778305

2018, Opt. Fiber Technol., 41, 7, 10.1016/j.yofte.2017.12.011

2016, Opt. Express, 24, 6011, 10.1364/OE.24.006011

2015, Opt. Express, 23, 15265, 10.1364/OE.23.015265

2016, Opt. Express, 24, 3488, 10.1364/OE.24.003488

2017, Laser Phys. Lett., 14, 015102, 10.1088/1612-202X/14/1/015102

2017, Opt. Express, 25, 18191, 10.1364/OE.25.018191

2013, Electron. Lett., 49, 148, 10.1049/el.2012.4267

2013

2016, J. Non-Cryst. Solids, 440, 85, 10.1016/j.jnoncrysol.2016.02.021

2015, Opt. Mater. Express, 5, 887, 10.1364/OME.5.000887

2007, Opt. Express, 15, 1606, 10.1364/OE.15.001606

2014, Opt. Express, 22, 7638, 10.1364/OE.22.007638

2012, Opt. Mater. Express, 2, 1286, 10.1364/OME.2.001286

2017, Appl. Phys. B, 123, 227, 10.1007/s00340-017-6803-y

2009, Opt. Lett., 34, 1204, 10.1364/OL.34.001204

1993, Opt. Lett., 18, 2105, 10.1364/OL.18.002105

2010, Proc. SPIE, 7580, 75800A, 10.1117/12.846230

2018, IEEE Sel. Top. Quantum Electron., 24, 0901808, 10.1109/JSTQE.2017.2775964

2016, Opt. Lett., 41, 2771, 10.1364/OL.41.002771

2017, Opt. Mater., 72, 106, 10.1016/j.optmat.2017.04.066

1987, Electron Lett., 23, 329, 10.1049/el:19870244

D. J. DiGiovanni and J. B. MacChesney, “Sol-gel doping of optical fiber preform,” U.S. patent 5,123,940 (June 23, 1992).

1993, Mater. Res. Bull., 28, 637, 10.1016/0025-5408(93)90107-O

1994, J. Mater. Res., 9, 2703, 10.1557/JMR.1994.2703

1995, J. Appl. Phys., 78, 6367, 10.1063/1.360518

2001, Opt. Lett., 26, 145, 10.1364/OL.26.000145

2002, Opt. Lett., 27, 1309, 10.1364/OL.27.001309

1998, J. Non-Cryst. Solids, 239, 149, 10.1016/S0022-3093(98)00731-5

1998, Mater. Res. Soc. Bull., 23, 57, 10.1557/S0883769400031018

2016, Curr. Nanosci., 12, 309, 10.2174/1573413711666150525224231

2012, Int. J. Appl. Ceram. Technol., 9, 341, 10.1111/j.1744-7402.2011.02669.x

2017, Phys. Status Solidi A., 214, 1600655, 10.1002/pssa.201600655

2015, Proc. SPIE, 9507, 950703, 10.1117/12.2179351

2017, J Am. Ceram. Soc., 100, 1814, 10.1111/jace.14774

2009, Opt. Lett., 34, 2339, 10.1364/OL.34.002339

2012, Opt. Mater. Express, 2, 1520, 10.1364/OME.2.001520

2014, Adv. Opt. Technol., 3, 447, 10.1515/aot-2014-0010

M. Cavillon, “Molten core fabrication of intrinsically low nonlinearity glass optical fibers,” PhD Dissertation (Clemson University, 2018).

2016, Relevance of the REPUSIL process for the production of LMA thulium-doped fibers

1995, Appl. Opt., 34, 6848, 10.1364/AO.34.006848

2012, Opt. Mater. Express, 2, 153, 10.1364/OME.2.000153

2010, Opt. Fiber Technol., 16, 399, 10.1016/j.yofte.2010.08.006

2016, Adv. Phys. X, 1, 114, 10.1080/23746149.2016.1146085

2013, Proc. SPIE, 8601, 86010H, 10.1117/12.2010234

2017, Electron. Lett., 53, 1661, 10.1049/el.2017.3355