See https://www.ipgphotonics.com/en/products/lasers/high-power-cw-fiber-lasers for high power fiber laser product offerings from IPG Photonics, Oxford, MA, USA.
2008, Analysis of the scalability of diffraction-limited fibre lasers and amplifiers to high average power, Opt. Express, 16, 13240, 10.1364/OE.16.013240
2010, High power fibre lasers: Current status and future perspectives, J. Opt. Soc. Am. B, 27, B63, 10.1364/JOSAB.27.000B63
2012, Laser Phys., 22, 1744, 10.1134/S1054660X12110199
2013, High-power fibre lasers, Nat. Photonics, 7, 861, 10.1038/nphoton.2013.273
2013, Nat. Photonics, 7, 868, 10.1038/nphoton.2013.280
2014, Int. J. Mod. Phys. B, 28, 1442009, 10.1142/S0217979214420090
2014, High Power Fiber Lasers: A Review, IEEE J. Sel. Top. Quantum Electron., 20, 219, 10.1109/JSTQE.2014.2321279
2017, J. Opt. Soc. Am. B, 34, A49, 10.1364/JOSAB.34.000A49
2013, Proc. SPIE, 8601, 860115, 10.1117/12.2021808
2012, High-Power Lasers: Fibre lasers drill for oil, Laser Focus World, 12, 27
2017, Proc. SPIE, 10058, 1005808, 10.1117/12.2256015
2010, Appl. Opt., 49, 562, 10.1364/AO.49.000562
See https://www.ipgphotonics.com/en_uploads/widget/widget_item_pdf_704.pdf?_=751132596 for Industrial Laser Solutions, Fiber Lasers Technical Digest.
1999, IEEE Photonics Technol. Lett., 11, 1593, 10.1109/68.806857
2009, IEEE Sel. Top. Quantum Electron., 15, 451, 10.1109/JSTQE.2009.2012403
2017, Proc. SPIE, 10086, 1008605, 10.1117/12.2250656
Fujikura Tech. Rev., 2016, 42, 10.1049/piee.1966.0189
2012, High brightness fiber coupled modular diode laser platform
1966, Proc. IEE, 113, 1151
1977, J. Am. Ceram. Soc., 60, 418, 10.1111/j.1151-2916.1977.tb15525.x
1965, J. Am. Ceram. Soc., 48, 75, 10.1111/j.1151-2916.1965.tb11803.x
1973, J. Appl. Phys., 44, 5432, 10.1063/1.1662170
2005, J. Ceram. Soc. Jpn., 113, 325, 10.2109/jcersj.113.325
1991, J. Electrochem. Soc., 138, 2830, 10.1149/1.2086066
1962, J. Am. Ceram. Soc., 45, 422, 10.1111/j.1151-2916.1962.tb11186.x
2005, J. Lightwave Technol., 23, 3500, 10.1109/JLT.2005.855867
2009, Inorg. Mater., 45, 444, 10.1134/S0020168509040220
1975, J. Am. Ceram. Soc., 58, 461, 10.1111/j.1151-2916.1975.tb19028.x
1969, J. Am. Ceram. Soc., 52, 17, 10.1111/j.1151-2916.1969.tb12653.x
1983, Electron. Lett., 19, 261, 10.1049/el:19830180
1995, Opt. Lett., 20, 1982, 10.1364/OL.20.001982
1978, Appl. Opt., 17, 1836, 10.1364/AO.17.001836
B. J. Cole and M. L. Dennis, “Heavy metal modified silica glass fibers doped with thulium, holmium, and thulium-sensitized-holmium high quantum efficiencies,” U.S. patent 6,667,257B2 (December 23, 2003).
2014, Fabrication and characterization of solution doped gallium and barium preforms, 116
2015, Appl. Opt., 54, 5508, 10.1364/AO.54.005508
1990, J. Lightwave Technol., 8, 1680, 10.1109/50.60565
S. K. Mishra, “Alkali and fluorine doped optical fiber,” U.S. patent 7,088,900B1 (August 8, 2006).
M. E. Lines, “SiO2-based alkali-doped optical fibe,” U.S. patent 5,146,534 (September 8, 1992).
J. B. MacChesney and J. R. Simpson, “Multicomponent optical fiber,” U.S. patent 4,666,247 (May 19, 1987).
2016, Phys. Status Solidi A, 213, 3039, 10.1002/pssa.201600301
J. B. MacChesney, J. R. Simpson, and K. L. Walker, “Doped optical fiber,” U.S. patent 4,616,901 (October 14, 1986).
1976, J. Am. Ceram. Soc., 59, 214, 10.1111/j.1151-2916.1976.tb10936.x
1974, J. Am. Ceram. Soc., 57, 309, 10.1111/j.1151-2916.1974.tb10908.x
1999, J. Non-Cryst. Solids, 259, 10, 10.1016/S0022-3093(99)00491-3
2000, Appl. Phys. Lett., 76, 807, 10.1063/1.125591
2005, Opt. Mater., 27, 1623, 10.1016/j.optmat.2004.05.009
See https://patents.google.com/?q=optical+fiber&q=composition&q=MCVD&oq=optical+fiber+composition+MCVD; accessed 25 January 2018.
1990, J. Am. Ceram. Soc., 73, 3537, 10.1111/j.1151-2916.1990.tb04256.x
2012, Silica Optical Fiber Technology for Devices and Components: Design, Fabrication, and International Standards
2004, IEEE J. Sel. Top. Quantum Electron., 10, 300, 10.1109/JSTQE.2004.826570
1980, J. Am. Ceram. Soc., 63, 346, 10.1111/j.1151-2916.1980.tb10739.x
1975, J. Am. Ceram. Soc., 58, 330, 10.1111/j.1151-2916.1975.tb11490.x
1989, J. Appl. Phys., 65, 30, 10.1063/1.342542
2000, Opt. Commun., 185, 337, 10.1016/S0030-4018(00)01045-2
1974, J. Opt. Soc. Am., 64, 475, 10.1364/JOSA.64.000475
1976, Appl. Phys. Lett., 28, 516, 10.1063/1.88839
1985, Jpn. J. Appl. Phys., Part 1, 24, 1117, 10.1143/JJAP.24.1117
1994, Jpn. J. Appl. Phys., Part 2, 33, L233, 10.1143/JJAP.33.L233
1998, J. Non-Cryst. Solids, 239, 16, 10.1016/S0022-3093(98)00720-0
1981, J. Non-Cryst. Solids, 45, 235, 10.1016/0022-3093(81)90190-3
1985, J. Non-Cryst. Solids, 71, 133, 10.1016/0022-3093(85)90282-0
1989, Appl. Phys. Lett., 54, 1650, 10.1063/1.101396
1994, J. Non-Cryst. Solids, 179, 75, 10.1016/0022-3093(94)90686-6
1988, Phys. Rev. B, 38, 12772, 10.1103/PhysRevB.38.12772
2015, Luminescence from lanthanides-doped glasses and applications: A review
2005, Sci. Prog., 88, 101, 10.3184/003685005783238435
1993, J. Alloys Compd., 192, 17, 10.1016/0925-8388(93)90172-J
2015, Crit. Rev. Environ. Sci. Technol., 45, 749, 10.1080/10643389.2014.900240
2010, Materials, 3, 3777, 10.3390/ma3063777
2016, J. Rare Earths, 34, 341, 10.1016/S1002-0721(16)60034-0
Atwood, 2012, The Rare Earth Elements: Fundamentals and Applications
1941, Phys. Rev., 60, 184, 10.1103/PhysRev.60.184
Digonnet, 1993, Optical and electronic properties of rare earth ions in glasses, Rare Earth Doped Fiber Lasers and Amplifiers, 19
1925, Skrifter Norske Videnskaps-Akad. Oslo, I: Mat. Naturv. Kl. No. 7
1961, J. Inorg. Nucl. Chem., 17, 215, 10.1016/0022-1902(61)80142-5
1995, J. Phys. Chem., 99, 11687, 10.1021/j100030a011
2002, Inorg. Chem., 41, 167, 10.1021/ic015580v
2006, Chem. Phys. Lett., 429, 8, 10.1016/j.cplett.2006.07.094
1978, Optical Spectra of Transparent Rare Earth Compounds
1965, Spectroscopic Properties of Rare Earths
2004, Understanding Solids: The Science of Materials, 3
1963, Operator Techniques in Atomic Spectroscopy
1989, Optical Spectroscopy of Inorganic Solids
1991, Rare Earth Magnetism: Structures and Excitations
1963, Appl. Opt., 2, 675, 10.1364/AO.2.000675
1999, Opt. Mater., 13, 81, 10.1016/S0925-3467(99)00015-4
2014, J. Mater. Chem. C, 2, 5327, 10.1039/C4TC00585F
1980, J. Phys. Soc. Jpn., 49, 1449, 10.1143/JPSJ.49.1449
2005, An Introduction to the Optical Spectroscopy of Inorganic Solids
2012, Opt. Express, 20, 17539, 10.1364/OE.20.017539
2010, Appl. Opt., 49, 6236, 10.1364/AO.49.006236
2009, Proc. SPIE, 7325, 73250B, 10.1117/12.820814
2009, IEEE J. Sel. Top. Quantum Electron., 15, 85, 10.1109/JSTQE.2008.2010719
2007, Appl. Opt., 46, 8118, 10.1364/AO.46.008118
2017, Laser Phys. Lett., 14, 125101, 10.1088/1612-202X/aa8b80
2017, J. Opt. Soc. Am. B, 34, A29, 10.1364/JOSAB.34.000A29
2015, Opt. Express, 23, 2991, 10.1364/OE.23.002991
2014, Opt. Express, 22, 29067, 10.1364/OE.22.029067
2004, Opt. Commun., 230, 197, 10.1016/j.optcom.2003.11.045
1990, Electron. Lett., 26, 166, 10.1049/el:19900113
1992, Electron Lett., 28, 1243, 10.1049/el:19920785
1994, All solid state blue room temperature thulium-doped upconversion fiber laser,” in OSA Technical Digest Series
1995, J. Opt. Soc. Am. B, 12, 709, 10.1364/JOSAB.12.000709
1997, IEEE J. Sel. Top. Quantum Electron., 3, 1100, 10.1109/2944.649548
2010, Laser Phys., 20, 1990, 10.1134/S1054660X10210048
1989, Electron. Lett., 25, 1660, 10.1049/el:19891113
1994, Electron. Lett., 30, 136, 10.1049/el:19940077
1994, Erbium-Doped Fiber Amplifiers: Principles and Applications
2001, Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed
1999, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology
1991, Appl. Opt., 30, 2546, 10.1364/AO.30.002546
1990, Appl. Phys. Lett., 56, 2607, 10.1063/1.102852
1990, IEEE Photonics Technol. Lett., 2, 153, 10.1109/68.50872
2000, IEEE J. Sel. Top. Quantum Electron., 6, 1008, 10.1109/2944.902149
1990, Electron. Lett., 26, 1038, 10.1049/el:19900673
1989, Opt. Lett., 14, 1266, 10.1364/OL.14.001266
2009, Proc. SPIE, 7325, 73250A, 10.1117/12.820802
2011, Opt. Express, 19, 5574, 10.1364/OE.19.005574
1989, Opt. Lett., 14, 1062, 10.1364/OL.14.001062
1991, IEEE Photonics Technol. Lett., 3, 619, 10.1109/68.87932
1995, J. Lightwave Technol., 13, 341, 10.1109/50.372427
2009, J. Appl. Phys., 106, 083108, 10.1063/1.3248369
1991, Electron. Lett., 27, 1785, 10.1049/el:19911110
1992, Electron. Lett., 28, 111, 10.1049/el:19920068
1914, Ann. Phys., 348, 965, 10.1002/andp.19143480702
1937, J. Phys. Chem., 41, 67, 10.1021/j150379a006
1976, J. Lumin., 12-13, 729, 10.1016/0022-2313(76)90168-X
2013, New J. Phys., 15, 053033, 10.1088/1367-2630/15/5/053033
2015, Opt. Express, 23, 1505, 10.1364/OE.23.001505
2009, IEEE J. Quantum Electron., 45, 1213, 10.1109/JQE.2009.2020607
2007, J. Opt. Soc. Am. B, 24, 2454, 10.1364/JOSAB.24.002454
1991, Opt. Lett., 16, 1089, 10.1364/OL.16.001089
1999, IEEE J. Quantum Electron., 35, 101, 10.1109/3.737626
1995, Appl. Phys. B, 61, 151, 10.1007/BF01090936
1992, IEEE J. Quantum Electron., 28, 2619, 10.1109/3.161321
1990, IEEE Photonics Technol. Lett., 2, 653, 10.1109/68.59340
2013, Opt. Commun., 288, 97, 10.1016/j.optcom.2012.10.004
2011, Laser Phys. Lett., 8, 305, 10.1002/lapl.201010138
1962, Phys. Rev., 127, 750, 10.1103/PhysRev.127.750
1962, J. Chem. Phys., 37, 511, 10.1063/1.1701366
1966, Phys. Rev., 145, 325, 10.1103/PhysRev.145.325
1968, Phys. Rev., 171, 283, 10.1103/PhysRev.171.283
1971, IEEE J. Quantum Electron., 7, 153, 10.1109/JQE.1971.1076623
1971, J. Appl. Phys., 42, 4996, 10.1063/1.1659885
1974, IEEE J. Quantum Electron., 10, 450, 10.1109/JQE.1974.1068162
1983, J. Less-Common Met., 93, 107, 10.1016/0022-5088(83)90454-X
1992, Phys. Rev. B, 46, 3305, 10.1103/PhysRevB.46.3305
1994, J. Appl. Phys., 76, 3730, 10.1063/1.357444
1995, J. Am. Ceram. Soc., 78, 1161, 10.1111/j.1151-2916.1995.tb08463.x
1993, J. Am. Ceram. Soc., 76, 3081, 10.1111/j.1151-2916.1993.tb06612.x
Cotton, 1962, The nephelauxetic series, Progress in Inorganic Chemistry, 73
1965, Mol. Phys., 10, 7, 10.1080/00268976600100021
1974, Mol. Phys., 28, 415, 10.1080/00268977400102941
Di Bartolo, 1987, Glass lasers and solar applications, Spectroscopy of Solid-State Laser-Type Materials, 343, 10.1007/978-1-4613-0899-7
1967, Phys. Rev., 157, 262, 10.1103/PhysRev.157.262
1968, J. Chem. Phys., 49, 4424, 10.1063/1.1669893
1977, Chem. Phys. Lett., 49, 49, 10.1016/0009-2614(77)80439-9
1962, Phys. Rev., 128, 2154, 10.1103/PhysRev.128.2154
2004, J. Non-Cryst. Solids, 336, 102, 10.1016/j.jnoncrysol.2004.01.009
1995, Laser Electronics, 3rd ed.
2016, Photonics: An Introduction
Di Bartolo, 2006, Judd-Ofelt theory: Principles and practices, Advances in Spectroscopy for Lasers and Sensing, 403, 10.1007/1-4020-4789-4
1964, Phys. Rev., 134, A299, 10.1103/PhysRev.134.A299
1994, J. Lightwave Technol., 12, 803, 10.1109/50.293972
1968, J. Chem. Phys., 49, 4412, 10.1063/1.1669892
2012, Nat. Commun., 3, 979, 10.1038/ncomms1984
1998, J. Appl. Phys., 83, 2772, 10.1063/1.367037
2001, J. Opt. Soc. Am. B, 18, 602, 10.1364/JOSAB.18.000602
2015, AIMS Mater. Sci., 2, 37, 10.3934/matersci.2015.2.37
2012, Phys. Rev. B, 86, 125102, 10.1103/PhysRevB.86.125102
1977, Phys. Rev. B, 16, 10, 10.1103/PhysRevB.16.10
1977, Chem. Phys. Lett., 49, 251, 10.1016/0009-2614(77)80580-0
Gschneidner, 1987, Excited state phenomena in vitreous materials, Handbook on the Physics and Chemistry of Rare Earths
1986, J. Appl. Phys., 59, 3430, 10.1063/1.336810
See https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=336 for details on this fiber.
2018, Opt. Mater. Express, 8, 744, 10.1364/OME.8.000744
1999, Opt. Lett., 24, 1041, 10.1364/OL.24.001041
2012, Thermal characteristics of ytterbium-doped phosphosilicate fiber amplifiers
Ytterbium lasers based on P2O5- and Al2O3-doped fibers
1995, Phys. Rev. B, 52, 15889, 10.1103/PhysRevB.52.15889
2008, Proc. SPIE, 6890, 689016, 10.1117/12.762967
2015, Opt. Mater. Express, 5, 742, 10.1364/OME.5.000742
2006, Mater. Res., 9, 21, 10.1590/S1516-14392006000100005
2005, Opt. Mater., 27, 1576, 10.1016/j.optmat.2005.04.006
1983, IEEE J. Quantum Electron., 19, 1600, 10.1109/JQE.1983.1071751
2008, Mater. Chem. Phys., 107, 488, 10.1016/j.matchemphys.2007.08.019
2017, J. Alloys Compd., 695, 2339, 10.1016/j.jallcom.2016.11.104
2012, Opt. Mater., 34, 1294, 10.1016/j.optmat.2012.02.019
2015, Proc. SPIE, 9513, 95130S, 10.1117/12.2182067
2014, Laser Phys. Lett., 11, 115811, 10.1088/1612-2011/11/11/115811
2002, J. Appl. Phys., 91, 576, 10.1063/1.1425445
2017, Opt. Express, 25, 25960, 10.1364/OE.25.025960
1991, J. Lightwave Technol., 9, 234, 10.1109/50.65882
1991, J. Lighwave Technol., 9, 220, 10.1109/50.65880
2015, Opt. Mater. Express, 5, 1689, 10.1364/OME.5.001689
2006, Opt. Mater., 28, 1271, 10.1016/j.optmat.2006.02.014
2015, Sci. Rep., 5, 10676, 10.1038/srep10676
2014, Advances in Electrical and Electronic Engineering, 12, 582, 10.15598/aeee.v12i6.1194
2016, Sci. Rep., 6, 20344, 10.1038/srep20344
2008, J. Appl. Phys., 103, 093104, 10.1063/1.2912952
2014, Sci. Rep., 4, 5256, 10.1038/srep05256
2003, Opt. Mater., 24, 563, 10.1016/S0925-3467(03)00144-7
2012, J. Lumin., 132, 1830, 10.1016/j.jlumin.2012.02.022
2011, Opt. Eng., 50, 111605, 10.1117/1.3613944
1994, Opt. Commun., 111, 310, 10.1016/0030-4018(94)90471-5
2006, J. Opt. Soc. Am. B, 23, 2581, 10.1364/JOSAB.23.002581
1997, J. Lumin., 71, 137, 10.1016/S0022-2313(96)00128-7
2011, Opt. Express, 19, 13940, 10.1364/OE.19.013940
2009, Proc. SPIE, 7193, 71931U, 10.1117/12.808767
2003, Proc. SPIE, 4974, 220, 10.1117/12.501679
2000, IEEE J. Quantum Electron., 36, 1000, 10.1109/3.853562
C. Xia, “Concentration quenching effect in rare-earth doped glasses,” thesis (University of Arizona, 2017).
2001, Opt. Mater., 16, 93, 10.1016/S0925-3467(00)00064-1
2006, Appl. Phys. Lett., 88, 161106, 10.1063/1.2196053
2003, J. Phys.: Condens. Matter, 15, 4877, 10.1088/0953-8984/15/27/319
1993, IEEE Photonics Technol. Lett., 5, 73, 10.1109/68.185065
2001, J. Non-Cryst. Solids, 284, 288, 10.1016/S0022-3093(01)00425-2
2017, Opt. Mater., 68, 24, 10.1016/j.optmat.2016.11.042
2012, Sci. Adv. Mater., 4, 292, 10.1166/sam.2012.1284
2010, Opt. Commun., 283, 3423, 10.1016/j.optcom.2010.04.093
2012, IEEE Photonics Technol. Lett., 24, 679, 10.1109/LPT.2012.2186437
2012, J. Lightwave Technol., 30, 2062, 10.1109/JLT.2012.2191391
2011, Opt. Express, 19, 14823, 10.1364/OE.19.014823
2017, Nanoscale Res. Lett., 12, 206, 10.1186/s11671-017-1947-6
2009, Glass Technol. – European Journal of Glass Science and Technology Part A, 50, 79
2009, Appl. Opt., 48, G119, 10.1364/AO.48.00G119
2017, Opt. Express, 25, 13903, 10.1364/OE.25.013903
2017, Am. J. Appl. Sci., 14, 150, 10.3844/ajassp.2017.150.156
2016, Curr. Nanosci., 12, 277, 10.2174/1573413711666150624170638
2017, Fibers, 5, 11, 10.3390/fib5010011
2014, Opt. Express, 22, 25976, 10.1364/OE.22.025976
2013, Chin. Phys. Lett., 30, 034204, 10.1088/0256-307X/30/3/034204
1993, Electron. Lett., 29, 1054, 10.1049/el:19930703
1997, Opt. Lett., 22, 694, 10.1364/OL.22.000694
1998, J. Lightwave Technol., 16, 1990, 10.1109/50.730360
2014, J. Lumin., 148, 249, 10.1016/j.jlumin.2013.12.008
2017, Opt. Mater. Express, 7, 1708, 10.1364/OME.7.001708
2001, Furukawa Rev., 20, 41
2015, Opt. Mater., 42, 270, 10.1016/j.optmat.2014.12.045
2008, Opt. Express, 16, 13781, 10.1364/OE.16.013781
2017, Indon. J. Electr. Eng. Comp. Sci., 8, 457
2013, Proc. SPIE, 8601, 86012X, 10.1117/12.2004420
2006, IEEE Photonics Technol. Lett., 18, 1609, 10.1109/LPT.2006.879584
2007, IEEE J. Sel. Top. Quantum Electron., 13, 573, 10.1109/JSTQE.2007.897178
2007, Fundamentals of Photonics, 2nd ed, 325
2006, Photonics and Lasers: An Introduction, 495, 10.1002/0471791598.app1
See https://www.lumentum.com/en/optical-communications/products/pump-lasers for examples of these pump lasers offered by Lumentum, Milpitas, CA, USA.
1989, Double clad high brightness Nd fiber laser pumped by GaAlAs phased array
1988, Double clad, offset core Nd fiber laser
2011, Opt. Eng., 50, 111607, 10.1117/1.3615653
2004, Opt. Fiber Technol., 10, 5, 10.1016/j.yofte.2003.07.001
1990, Proc. SPIE, 1177, 257, 10.1117/12.963341
2017, Proc. SPIE, 10083, 1008315, 10.1117/12.2252091
2011, Recent advances in MMF technology for data networks
2014, WideBand OM4 multi-mode fiber for next-generation 400 Gbps data communications
2005, Opt. Commun., 247, 153, 10.1016/j.optcom.2004.11.037
1974, IEEE J. Quantum Electron., QE-10, 879, 10.1109/JQE.1974.1068118
1976, Appl. Opt., 15, 1121, 10.1364/AO.15.001121
2006, Opt. Express, 14, 5103, 10.1364/OE.14.005103
2015, IEEE Photonics J., 7, 1500109, 10.1109/JPHOT.2014.2381656
2011, Laser Phys., 21, 948, 10.1134/S1054660X11090052
2017, Fiber Lasers: Basics, Technology, and Applications, 199
2017, J. Opt. Soc. Am. B, 34, 764, 10.1364/JOSAB.34.000764
2017, Appl. Phys. Express, 10, 032103, 10.7567/APEX.10.032103
2010, Supercontinuum Generation in Optical Fibers
2006, Proc. SPIE, 6343, 63430X, 10.1117/12.707712
2010, J. Lightwave Technol., 28, 3212
2007, Robustly single-mode polarization maintaining Er/Yb Co-doped LMA fiber for high power applications
2013, 1.0 μm co-seeded Er:Yb fiber amplifier with 50 W output power at 1.5 μm
2007, Proc. SPIE, 6453, 645308, 10.1117/12.699075
2007, J. Opt. Soc. Am. B, 24, 1677, 10.1364/JOSAB.24.001677
2003, J. Opt. Soc. Am. A, 20, 1617, 10.1364/JOSAA.20.001617
2008, Appl. Phys. B, 90, 369, 10.1007/s00340-008-2947-0
2011, J. Opt. Soc. Am. B, 28, 2430, 10.1364/JOSAB.28.002430
2017, Appl. Opt., 56, 8169, 10.1364/AO.56.008169
2011, J. Opt. Soc. Am. B, 28, 1498, 10.1364/JOSAB.28.001498
2012, Opt. Express, 20, 3296, 10.1364/OE.20.003296
2015, Opt. Express, 23, 7407, 10.1364/OE.23.007407
2016, Ytterbium-doped 30/400 LMA fibers with a record-low ∼NA of 0.028
2000, Opt. Lett., 25, 442, 10.1364/OL.25.000442
2009, J. Lighwave Technol., 27, 3010, 10.1109/JLT.2009.2020682
2014, Opt. Express, 22, 9206, 10.1364/OE.22.009206
1996, Opt. Lett., 21, 1547, 10.1364/OL.21.001547
2007, J. Opt. Soc. Am. B, 24, 1661, 10.1364/JOSAB.24.001661
2003, Opt. Express, 11, 48, 10.1364/OE.11.000048
2007, Opt. Express, 15, 16787, 10.1364/OE.15.016787
2011, Opt. Eng., 50, 111609, 10.1117/1.3631872
2003, Opt. Express, 11, 818, 10.1364/OE.11.000818
2008, Opt. Express, 16, 3918, 10.1364/OE.16.003918
2006, Opt. Express, 14, 11512, 10.1364/OE.14.011512
Yasin, 2015, Advanced Optical Fibers for High Power Fiber Lasers, Advances in Optical Fiber Technology: Fundamental Optical Phenomena and Applications, 221
2010, Opt. Express, 18, 17651, 10.1364/OE.18.017651
1989, Advanced Engineering Electromagnetics, 470
1830, Bull. Sci. Math., 14, 6
1836, Mémoire Sur la Dispersion de la Lumière
1871, Ann. Phys., 219, 272, 10.1002/andp.18712190612
1997, Appl. Opt., 36, 1540, 10.1364/AO.36.001540
2004, Opt. Mater., 26, 235, 10.1016/j.optmat.2003.10.006
2014, Proc. SPIE, 9131, 91310H, 10.1117/12.2052706
1984, Appl. Opt., 23, 4477, 10.1364/AO.23.004477
1998, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications, 5
Musikant, 1990, Optical fiber materials, Optical Materials, a Series of Advances, 147
See https://refractiveindex.info for a very nice refractive index calculator for a wide range of materials.
1978, Opt. Quantum Electron., 10, 163, 10.1007/BF00620007
1984, Appl. Opt., 23, 4486, 10.1364/AO.23.004486
2018, Int. J. Appl. Glass Sci., 9, 421, 10.1111/ijag.12337
1989, J. Non-Cryst. Solids, 113, 58, 10.1016/0022-3093(89)90318-9
1996, Opt. Fiber Technol., 2, 387, 10.1006/ofte.1996.0044
2009, Opt. Lett., 34, 3355, 10.1364/OL.34.003355
2015, Opt. Lett., 40, 5030, 10.1364/OL.40.005030
1995, Nonlinear Fiber Optics, 2nd ed
2017, New J. Phys., 19, 011003, 10.1088/1367-2630/aa5447
2010, Adv. Opt. Photonics, 2, 1, 10.1364/AOP.2.000001
1990, Phys. Rev. A, 42, 5514, 10.1103/PhysRevA.42.5514
1991, Phys. Rev. B, 44, 4281, 10.1103/PhysRevB.44.4281
1972, Appl. Opt., 11, 2489, 10.1364/AO.11.002489
1994, IEEE J. Quantum Electron., 30, 1817, 10.1109/3.301646
2011, Opt. Express, 19, 8394, 10.1364/OE.19.008394
2014, J. Opt. Soc. Am. B, 31, 2809, 10.1364/JOSAB.31.002809
See https://www.thorlabs.com/catalogpages/1074.pdf for the software package offered by Thorlabs, Newton, NJ, USA.
See https://www.rp-photonics.com/software.html for the software package offered by RP Photonics, Bad Dürrheim, Germany.
1986, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, UFFC-33, 59, 10.1109/T-UFFC.1986.26797
1985, Proc. IEEE Ultrason. Symp., 2, 1128, 10.1109/ULTSYM.1985.198693
1989, IEEE J. Lightwave Technol., 7, 2018, 10.1109/50.41623
1988, Electron. Lett., 24, 1419, 10.1049/el:19880969
2009, Opt. Lett., 34, 3689, 10.1364/OL.34.003689
1988, Opt. Lett., 13, 595, 10.1364/OL.13.000595
1989, J. Opt. Soc. Am. B, 6, 1167, 10.1364/JOSAB.6.001167
2012, Microw. Opt. Technol. Lett., 54, 2347, 10.1002/mop.27049
1986, IEE Proc. J. Optoelectron., 133, 256, 10.1049/ip-j.1986.0041
2008, Opt. Express, 16, 15970, 10.1364/OE.16.015970
2013, Opt. Mater., 35, 1627, 10.1016/j.optmat.2013.04.006
2015, Laser Phys., 25, 085101, 10.1088/1054-660X/25/8/085101
2017, Opt. Express, 25, 14892, 10.1364/OE.25.014892
2018, Proc. SPIE, 10512, 105120E, 10.1117/12.2291100
2018, Proc. SPIE, 10512, 105122S, 10.1117/12.2291423
2013, Opt. Express, 21, 4677, 10.1364/OE.21.004677
2017, Appl. Opt., 56, B116, 10.1364/AO.56.00B116
1993, J. Am. Ceram. Soc., 76, 3073, 10.1111/j.1151-2916.1993.tb06611.x
1970, J. Acoust. Soc. Am., 48, 1086, 10.1121/1.1912247
2010, Opt. Express, 18, 18852, 10.1364/OE.18.018852
2016, J. Non-Cryst. Solids, 433, 82, 10.1016/j.jnoncrysol.2015.11.027
2014, High Power Laser Sci. Eng., 2, e3, 10.1017/hpl.2014.2
2011, Opt. Lett., 36, 2293, 10.1364/OL.36.002293
2016, Kilowatt-class, all-fiber amplifiers for beam combining, SPIE Newsroom
1995, Electron. Lett., 31, 668, 10.1049/el:19950418
2017, Photonics Res., 5, 233, 10.1364/PRJ.5.000233
1993, J. Lightwave Technol., 11, 1941, 10.1109/50.257954
2013, Opt. Fiber Technol., 19, 432, 10.1016/j.yofte.2013.05.010
2001, J. Lighwave Technol., 19, 1691, 10.1109/50.964069
2007, Opt. Express, 15, 977, 10.1364/OE.15.000977
1991, Electron. Lett., 27, 1100, 10.1049/el:19910683
2014, Appl. Opt., 53, 4413, 10.1364/AO.53.004413
2008, Proc. SPIE, 6873, 68730O, 10.1117/12.774714
2010, Brillouin suppression by fiber design
2013, Opt. Mater. Express, 3, 511, 10.1364/OME.3.000511
2005, Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression, 1984
2006, Fiber designs for reducing stimulated Brillouin scattering
2009, IEEE J. Sel. Top. Quantum Electron., 15, 37, 10.1109/JSTQE.2008.2010240
2010, Proc. SPIE, 7580, 75801G, 10.1117/12.847926
2010, J. Lightwave Technol., 21, 3156
2011, J. Lightwave Technol., 29, 967, 10.1109/JLT.2011.2107502
2013, J. Am. Ceram. Soc., 96, 2675, 10.1111/jace.12516
2014, Materials, 7, 4411, 10.3390/ma7064411
2018, Int. J. Appl. Glass Sci., 9, 263, 10.1111/ijag.12327
2012, Nat. Photonics, 6, 627, 10.1038/nphoton.2012.182
2014, Appl. Opt., 53, 5660, 10.1364/AO.53.005660
2013, Opt. Express, 21, 10924, 10.1364/OE.21.010924
2016, J. Lightwave Technol., 34, 1435, 10.1109/JLT.2015.2508452
2015, Int. J. Appl. Glass Sci., 6, 387, 10.1111/ijag.12146
2009, J. Appl. Phys., 105, 053110, 10.1063/1.3080135
1987, J. Appl. Phys., 62, 4363, 10.1063/1.339069
1985, J. Non-Cryst. Solids, 71, 373, 10.1016/0022-3093(85)90308-4
1976, Phys. Rev. Lett., 37, 1474, 10.1103/PhysRevLett.37.1474
1979, Phys. Rev. B, 19, 4292, 10.1103/PhysRevB.19.4292
2018, Proc. SPIE, 10512, 105121I, 10.1117/12.2289511
2010, Opt. Lett., 35, 2982, 10.1364/OL.35.002982
2006, Suppression of stimulated Raman scattering in a cladding pumped amplifier with an Yb-doped filter fiber
2018, IEEE J. Sel. Top. Quantum Electron., 24, 0901509, 10.1109/JSTQE.2017.2773613
2011, Opt. Express, 19, 22575, 10.1364/OE.19.022575
2005, Opt. Commun., 250, 403, 10.1016/j.optcom.2005.02.048
2010, Proc. SPIE, 7580, 758012, 10.1117/12.840892
2006, Opt. Lett., 31, 2290, 10.1364/OL.31.002290
2015, Proc. SPIE, 9344, 93440U, 10.1117/12.2086852
2015, Appl. Sci., 5, 1323, 10.3390/app5041323
2016, Opt. Express, 24, 6758, 10.1364/OE.24.006758
1975, Appl. Spectrosc., 29, 337, 10.1366/000370275774455969
1978, Appl. Phys. Lett., 32, 34, 10.1063/1.89823
2013, Electron. Lett., 49, 895, 10.1049/el.2013.1386
1995, Opt. Lett., 20, 2279, 10.1364/OL.20.002279
2015, Opt. Express, 23, 29764, 10.1364/OE.23.029764
2008, Appl. Phys. Lett., 92, 181108, 10.1063/1.2917470
2009, Proc. SPIE, 7195, 71952N, 10.1117/12.809957
2002, Electron. Lett., 38, 1578, 10.1049/el:20021050
2013, Appl. Opt., 52, 7331, 10.1364/AO.52.007331
1988, Laser Diode Modulation and Noise
2010, Opt. Lett., 35, 1542, 10.1364/OL.35.001542
2014, IEEE J. Sel. Top. Quantum Electron., 20, 0901008, 10.1109/JSTQE.2013.2296771
2017, Proc. SPIE, 10083, 100830S, 10.1117/12.2255019
2018, Nonlinear characterization of a Kolowatt-class amplifier based on laser gain competition
1989, Phys. Rev. B, 39, 3337, 10.1103/PhysRevB.39.3337
2002, IEEE Photonics Technol. Lett., 14, 492, 10.1109/68.992588
1987, J. Opt. Soc. Am. B, 4, 875, 10.1364/JOSAB.4.000875
2009, IEEE Sel. Top. Quantum Electron., 15, 153, 10.1109/JSTQE.2008.2010331
1999, Appl. Opt., 38, 2510, 10.1364/AO.38.002510
2006, Opt. Lett., 31, 3423, 10.1364/OL.31.003423
2007, Opt. Commun., 280, 424, 10.1016/j.optcom.2007.08.040
2007, Opt. Lett., 32, 1551, 10.1364/OL.32.001551
2008, Opt. Express, 16, 2431, 10.1364/OE.16.002431
2011, Opt. Express, 19, 3258, 10.1364/OE.19.003258
2011, Opt. Express, 19, 10180, 10.1364/OE.19.010180
A. V. Smith and J. J. Smith, “Review of models of mode instability in fiber amplifiers,” https://pdfs.semanticscholar.org/023b/8b994407852d360f1ad6ae4312bc9fca02d1.pdf
2014, IEEE J. Sel. Top. Quantum Electron., 20, 0903512, 10.1109/JSTQE.2014.2310657
2017, Fiber Lasers: Basics, Technology, and Applications, 50
2011, Opt. Express, 19, 13218, 10.1364/OE.19.013218
2013, Opt. Express, 21, 2642, 10.1364/OE.21.002642
2018, High Power Laser Sci. Eng., 6, e16, 10.1017/hpl.2018.9
2018, Proc. SPIE, 10512, 105121Z, 10.1117/12.2289104
2017, Photonics Res., 5, 77, 10.1364/PRJ.5.000077
2017, Proc. SPIE, 10083, 10083311, 10.1117/12.2251261
2018, Proc. SPIE, 10512, 105120F, 10.1117/12.2291253
2017, Opt. Mater. Express, 7, 3654, 10.1364/OME.7.003654
2018, Tailoring the thermo-optic coefficient in silica optical fibers
2016, Opt. Express, 24, 19841, 10.1364/OE.24.019841
2001, IEEE J. Quantum Electron., 37, 207, 10.1109/3.903070
2017, Int. J. Appl. Glass Sci., 9, 278, 10.1111/ijag.12328
2018, Int. J. Appl. Glass Sci., 9, 307, 10.1111/ijag.12329
1988, Mathematical Approach to Glass
2018, Int. J. Appl. Glass Sci., 9, 447, 10.1111/ijag.12336
2009, Electron. Lett., 45, 256, 10.1049/el:20093739
2010, Int. J. Appl. Glass Sci., 1, 330, 10.1111/j.2041-1294.2010.00025.x
2009, J. Non-Cryst. Solids, 355, 403, 10.1016/j.jnoncrysol.2009.01.005
2013, J. Opt. Soc. Am. B, 30, 244, 10.1364/JOSAB.30.000244
1988, J. Lightwave Technol., 6, 17, 10.1109/50.3956
1987, Chem. Geol., 62, 111, 10.1016/0009-2541(87)90062-3
1894, Ann. Phys. Chem., 51, 730
1927, J. Am. Ceram. Soc., 10, 551, 10.1111/j.1151-2916.1927.tb16425.x
1930, J. Am. Ceram. Soc., 13, 182, 10.1111/j.1151-2916.1930.tb16561.x
1934, Verre Silic. Ind., 5, 122
2001, Phys. Chem. Glass, 42, 158
2017, Opt. Lett., 42, 3650, 10.1364/OL.42.003650
1985, Electron. Commun. Jpn., 68, 37, 10.1002/ecjb.4420680305
1982, Appl. Opt., 21, 4223, 10.1364/AO.21.004223
2015, Optica, 2, 313, 10.1364/OPTICA.2.000313
2016, Int. J. Appl. Glass Sci., 7, 3, 10.1111/ijag.12137
2006, Opt. Lett., 31, 161, 10.1364/OL.31.000161
2016, Int. J. Appl. Glass Sci., 7, 11, 10.1111/ijag.12141
2017, Appl. Phys. Lett., 111, 221901, 10.1063/1.5005822
2012, Opt. Mater. Express, 2, 1641, 10.1364/OME.2.001641
1997, Physics and Chemistry of Photochromic Glasses
1983, Sov. J. Glass Phys. Chem., 9, 229
2006, Proc. SPIE, 6116, 61160G, 10.1117/12.660405
1988, Electron. Lett., 24, 590, 10.1049/el:19880400
1993, Opt. Lett., 18, 799, 10.1364/OL.18.000799
1994, Opt. Lett., 19, 874, 10.1364/OL.19.000874
1997, Opt. Commun., 136, 375, 10.1016/S0030-4018(96)00720-1
2005, Proc. SPIE, 5990, 599008, 10.1117/12.630499
2006, Opt. Express, 14, 11539, 10.1364/OE.14.011539
2008, Appl. Opt., 47, 1247, 10.1364/AO.47.001247
2009, Proc. SPIE, 7195, 71952D, 10.1117/12.809182
2007, Proc. SPIE, 6453, 64531E, 10.1117/12.712545
2011, Opt. Express, 19, 19340, 10.1364/OE.19.019340
2011, Proc. SPIE, 7914, 79140L, 10.1117/12.877868
2009, Appl. Phys. Lett., 95, 051908, 10.1063/1.3197631
2007, Opt. Express, 15, 14838, 10.1364/OE.15.014838
1995, Appl. Opt., 34, 3436, 10.1364/AO.34.003436
2010, Proc. SPIE, 7580, 75801Y, 10.1117/12.840026
2009, Opt. Lett., 34, 109, 10.1364/OL.34.000109
2009, Proc. SPIE, 7195, 71952C, 10.1117/12.808189
2010, Opt. Express, 18, 20455, 10.1364/OE.18.020455
2012, Proc. SPIE, 8257, 825705, 10.1117/12.914613
2012, J. Appl. Phys., 112, 093511, 10.1063/1.4761973
2011, Opt. Express, 19, 14473, 10.1364/OE.19.014473
2017, J. Light Technol., 35, 2535, 10.1109/JLT.2017.2690383
2013, Opt. Express, 21, 7590, 10.1364/OE.21.007590
2007, Opt. Lett., 32, 3352, 10.1364/OL.32.003352
2008, Opt. Express, 16, 1260, 10.1364/OE.16.001260
2009, Opt. Lett., 34, 1285, 10.1364/OL.34.001285
2010, J. Opt. Soc. Am. B, 27, 338, 10.1364/JOSAB.27.000338
2016, Appl. Phys. A, 122, 75, 10.1007/s00339-015-9576-3
2016, Opt. Express, 24, 13009, 10.1364/OE.24.013009
2013, Opt. Express, 21, 6681, 10.1364/OE.21.006681
2014, J. Mater. Chem. C, 2, 4406, 10.1039/C3TC32576H
1963, J. Chem. Phys., 39, 3251, 10.1063/1.1734186
2007, Laser Phys. Lett., 4, 734, 10.1002/lapl.200710053
2008, Fujikura Giho, 115, 6
2011, Proc. SPIE, 7914, 79140K, 10.1117/12.879800
2013, Opt. Express, 21, 8382, 10.1364/OE.21.008382
2007, Opt. Lett., 32, 1626, 10.1364/OL.32.001626
1986, Color Centers in Glass Optical Fiber Waveguides, 319
1989, Opt. Lett., 14, 1023, 10.1364/OL.14.001023
1988, Opt. Lett., 13, 1023, 10.1364/OL.13.001023
2010, J. Opt. Soc. Am. B, 27, 2087, 10.1364/JOSAB.27.002087
2012, Opt. Express, 20, 14494, 10.1364/OE.20.014494
2008, Opt. Express, 16, 4688, 10.1364/OE.16.004688
2008, IEEE Photonics Technol. Lett., 20, 1760, 10.1109/LPT.2008.2004679
2011, Opt. Express, 19, 19797, 10.1364/OE.19.019797
2008, Electron. Lett., 44, 14, 10.1049/el:20082698
2012, Appl. Opt., 51, 7758, 10.1364/AO.51.007758
2009, Opt. Express, 17, 9924, 10.1364/OE.17.009924
2008, Proc. SPIE, 6873, 68731G, 10.1117/12.776638
2008, Opt. Express, 16, 15540, 10.1364/OE.16.015540
2012, J. Chem. Phys., 136, 014503, 10.1063/1.3673792
2000, J. Alloys Comp., 300-301, 443, 10.1016/S0925-8388(99)00760-4
2018, Opt. Mater. Express, 8, 385, 10.1364/OME.8.000385
2016, Proc. SPIE, 9728, 97281C, 10.1117/12.2209610
2018, IEEE Photonics Technol. Lett., 30, 127, 10.1109/LPT.2017.2778305
2018, Opt. Fiber Technol., 41, 7, 10.1016/j.yofte.2017.12.011
2016, Opt. Express, 24, 6011, 10.1364/OE.24.006011
2015, Opt. Express, 23, 15265, 10.1364/OE.23.015265
2016, Opt. Express, 24, 3488, 10.1364/OE.24.003488
2017, Laser Phys. Lett., 14, 015102, 10.1088/1612-202X/14/1/015102
2017, Opt. Express, 25, 18191, 10.1364/OE.25.018191
2013, Electron. Lett., 49, 148, 10.1049/el.2012.4267
2016, J. Non-Cryst. Solids, 440, 85, 10.1016/j.jnoncrysol.2016.02.021
2015, Opt. Mater. Express, 5, 887, 10.1364/OME.5.000887
2007, Opt. Express, 15, 1606, 10.1364/OE.15.001606
2014, Opt. Express, 22, 7638, 10.1364/OE.22.007638
2012, Opt. Mater. Express, 2, 1286, 10.1364/OME.2.001286
2017, Appl. Phys. B, 123, 227, 10.1007/s00340-017-6803-y
2009, Opt. Lett., 34, 1204, 10.1364/OL.34.001204
1993, Opt. Lett., 18, 2105, 10.1364/OL.18.002105
2010, Proc. SPIE, 7580, 75800A, 10.1117/12.846230
2018, IEEE Sel. Top. Quantum Electron., 24, 0901808, 10.1109/JSTQE.2017.2775964
2016, Opt. Lett., 41, 2771, 10.1364/OL.41.002771
2017, Opt. Mater., 72, 106, 10.1016/j.optmat.2017.04.066
1987, Electron Lett., 23, 329, 10.1049/el:19870244
D. J. DiGiovanni and J. B. MacChesney, “Sol-gel doping of optical fiber preform,” U.S. patent 5,123,940 (June 23, 1992).
1993, Mater. Res. Bull., 28, 637, 10.1016/0025-5408(93)90107-O
1994, J. Mater. Res., 9, 2703, 10.1557/JMR.1994.2703
1995, J. Appl. Phys., 78, 6367, 10.1063/1.360518
2001, Opt. Lett., 26, 145, 10.1364/OL.26.000145
2002, Opt. Lett., 27, 1309, 10.1364/OL.27.001309
1998, J. Non-Cryst. Solids, 239, 149, 10.1016/S0022-3093(98)00731-5
1998, Mater. Res. Soc. Bull., 23, 57, 10.1557/S0883769400031018
2016, Curr. Nanosci., 12, 309, 10.2174/1573413711666150525224231
2012, Int. J. Appl. Ceram. Technol., 9, 341, 10.1111/j.1744-7402.2011.02669.x
2017, Phys. Status Solidi A., 214, 1600655, 10.1002/pssa.201600655
2015, Proc. SPIE, 9507, 950703, 10.1117/12.2179351
2017, J Am. Ceram. Soc., 100, 1814, 10.1111/jace.14774
2009, Opt. Lett., 34, 2339, 10.1364/OL.34.002339
2012, Opt. Mater. Express, 2, 1520, 10.1364/OME.2.001520
2014, Adv. Opt. Technol., 3, 447, 10.1515/aot-2014-0010
M. Cavillon, “Molten core fabrication of intrinsically low nonlinearity glass optical fibers,” PhD Dissertation (Clemson University, 2018).
2016, Relevance of the REPUSIL process for the production of LMA thulium-doped fibers
1995, Appl. Opt., 34, 6848, 10.1364/AO.34.006848
2012, Opt. Mater. Express, 2, 153, 10.1364/OME.2.000153
2010, Opt. Fiber Technol., 16, 399, 10.1016/j.yofte.2010.08.006
2016, Adv. Phys. X, 1, 114, 10.1080/23746149.2016.1146085
2013, Proc. SPIE, 8601, 86010H, 10.1117/12.2010234
2017, Electron. Lett., 53, 1661, 10.1049/el.2017.3355