Materials for electrochemical capacitors
Tóm tắt
Từ khóa
Tài liệu tham khảo
Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, 1999).
Service, R. F. New 'supercapacitor' promises to pack more electrical punch. Science 313, 902–905 (2006).
Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
Armand, M. & Johansson, P. Novel weakly coordinating heterocyclic anions for use in lithium batteries. J. Power Sources 178, 821–825 (2008).
Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).
US Department of Energy. Basic Research Needs for Electrical Energy Storage <www.sc.doe.gov/bes/reports/abstracts.html#EES2007> (2007).
Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000).
Miller, J. R. & Burke, A. F. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interf. 17, 53–57 (2008).
Pandolfo, A. G. & Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006).
Kyotani, T., Chmiola, J. & Gogotsi, Y. in Carbon Materials for Electrochemical Energy Storage Systems (eds Beguin, F. & Frackowiak, E.) Ch. 13 (CRC/Taylor and Francis, in the press).
Futaba, D. N. et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater. 5, 987–994 (2006).
Portet, C., Chmiola, J., Gogotsi, Y., Park, S. & Lian, K. Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta, 53, 7675–7680 (2008).
Yang, C.-M. et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 129, 20–21 (2007).
Niu, C., Sichel, E. K., Hoch, R., Moy, D. & Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480 (1997).
Azaïs, P. et al. Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171, 1046–1053 (2007).
Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F. & Chesneau, M. Studies and characterization of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001).
Qu, D. & Shi, H. Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998).
Qu, D. Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403–411 (2002).
Kim, Y. J. et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 42, 1491 (2004).
Marcus, Y. Ion Solvation (Wiley, 1985).
Jurewicz, K. et al. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J. Phys. Chem. Solids 65, 287 (2004).
Fernández, J. A. et al. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 175, 675 (2008).
Fuertes, A. B., Lota, G., Centeno, T. A. & Frackowiak, E. Templated mesoporous carbons for supercapacitor application. Electrochim. Acta 50, 2799 (2005).
Salitra, G., Soffer, A., Eliad, L., Cohen, Y. & Aurbach, D. Carbon electrodes for double-layer capacitors. I. Relations between ion and pore dimensions. J. Electrochem. Soc. 147, 2486–2493 (2000).
Vix-Guterl, C. et al. Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005).
Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. On the mechanism of selective electroadsorption of protons in the pores of carbon molecular sieves. Langmuir 21, 3198–3202 (2005).
Eliad, L. et al. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors. Appl. Phys. A 82, 607–613 (2006).
Arulepp, M. et al. The advanced carbide-derived carbon based supercapacitor. J. Power Sources 162, 1460–1466 (2006).
Arulepp, M. et al. Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sources 133, 320–328 (2004).
Raymundo-Pinero, E., Kierzek, K., Machnikowski, J. & Beguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498–2507 (2006).
Janes, A. & Lust, E. Electrochemical characteristics of nanoporous carbide-derived carbon materials in various nonaqueous electrolyte solutions. J. Electrochem. Soc. 153, A113–A116 (2006).
Shanina, B. D. et al. A study of nanoporous carbon obtained from ZC powders (Z = Si, Ti, and B). Carbon 41, 3027–3036 (2003).
Chmiola, J., Dash, R., Yushin, G. & Gogotsi, Y. Effect of pore size and surface area of carbide derived carbon on specific capacitance. J. Power Sources 158, 765–772 (2006).
Dash, R. et al. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44, 2489–2497 (2006).
Gogotsi, Y. et al. Nanoporous carbide-derived carbon with tunable pore size. Nature Mater. 2, 591–594 (2003).
Chmiola, J. et al. Anomalous increase in carbon capacitance at pore size below 1 nm. Science 313, 1760–1763 (2006).
Huang, J. S., Sumpter, B. G. & Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520–524 (2008).
Huang, J., Sumpter, B. G. & Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbons, and electrolytes. Chem. Eur. J. 14, 6614–6626 (2008).
Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P. & Gogotsi, Y. Desolvation of ions in subnanometer pores, its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 47, 3392–3395 (2008).
Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).
Weigand, G., Davenport, J. W., Gogotsi, Y. & Roberto, J. in Scientific Impacts and Opportunities for Computing Ch. 5, 29–35 (DOE Office of Science, 2008).
Brousse, T. et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171–A2180 (2006).
Rudge, A., Raistrick, I., Gottesfeld, S. & Ferraris, J. P. Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89–107 (1994).
Zheng, J. P. & Jow, T. R. High energy and high power density electrochemical capacitors. J. Power Sources 62, 155–159 (1996).
Lee, H. Y. & Goodenough, J. B. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999).
Laforgue, A., Simon, P. & Fauvarque, J.-F. Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage. Synth. Met. 123, 311–319 (2001).
Naoi, K., Suematsu, S. & Manago, A. Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147, 420–426 (2000).
Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).
Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).
Machida, K., Furuuchi, K., Min, M. & Naoi, K. Mixed proton–electron conducting nanocomposite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry 72, 402–404 (2004).
Toupin, M., Brousse, T. & Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004).
Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y. & Takasu, Y. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42, 4092–4096 (2003).
Miller, J. M., Dunn, B., Tran, T. D. & Pekala, R. W. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144, L309–L311 (1997).
Min, M., Machida, K., Jang, J. H. & Naoi, K. Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153, A334–A338 (2006).
Wang, Y., Takahashi, K., Lee, K. H. & Cao, G. Z. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 16, 1133–1144 (2006).
Naoi, K. & Simon, P. New materials and new configurations for advanced electrochemical capacitors. Electrochem. Soc. Interf. 17, 34–37 (2008).
Fischer, A. E., Pettigrew, K. A., Rolison, D. R., Stroud, R. M. & Long, J. W. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007).
Kazaryan, S. A., Razumov, S. N., Litvinenko, S. V., Kharisov, G. G. & Kogan, V. I. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters. J. Electrochem. Soc. 153, A1655–A1671 (2006).
Amatucci, G. G., Badway, F. & DuPasquier, A. in Intercalation Compounds for Battery Materials (ECS Proc. Vol. 99) 344–359 (Electrochemical Society, 2000).
Burke, A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53, 1083–1091 (2007).
Portet, C., Taberna, P. L., Simon, P. & Laberty-Robert, C. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim. Acta 49, 905–912 (2004).
Talapatra, S. et al. Direct growth of aligned carbon nanotubes on bulk metals. Nature Nanotech. 1, 112–116 (2006).
Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).
Jang, J. H., Machida, K., Kim, Y. & Naoi, K. Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances. Electrochim. Acta. 52, 1733 (2006).
Cambaz, Z. G., Yushin, G., Osswald, S., Mochalin, V. & Gogotsi, Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 46, 841–849 (2008).
Tsuda, T. & Hussey, C. L. Electrochemical applications of room-temperature ionic liquids. Electrochem. Soc. Interf. 16, 42–49 (2007).
Balducci, A. et al. High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165, 922–927 (2007).
Balducci, A. et al. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim. Acta 50, 2233–2237 (2005).
Balducci, A., Soavi, F. & Mastragostino, M. The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl. Phys. A 82, 627–632 (2006).
Endres, F., MacFarlane, D. & Abbott, A. (eds) Electrodeposition from Ionic Liquids (Wiley-VCH, 2008).
Faggioli, E. et al. Supercapacitors for the energy management of electric vehicles. J. Power Sources 84, 261–269 (1999).
Chmiola, J. & Gogotsi, Y. Supercapacitors as advanced energy storage devices. Nanotechnol. Law Bus. 4, 577–584 (2007).