Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances
Tóm tắt
Bacterial adhesion to surfaces and subsequent biofilm formation are a leading cause of chronic infections and biofouling. These processes are highly sensitive to environmental factors and present a challenge to research using traditional approaches with uncontrolled surfaces. Recent advances in materials research and surface engineering have brought exciting opportunities to pattern bacterial cell clusters and to obtain synthetic biofilms with well-controlled cell density and morphology of cell clusters. In this article, we will review the recent achievements in this field and comment on the future directions.
Tài liệu tham khảo
Donlan R M. Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases, 2001, 33(8): 1387–1392
Walker J, Surman S, Jass J. Industrial Biofouling: Detection, Prevention and Control. Wiley, 2000: 1–12
Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the des-ign of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011, 23(6): 690–718
Davey M E, O’Toole G A. Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 2000, 64(4): 847–867
Donlan R M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 2002, 8(9): 881–890
Dunne W M. Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 2002, 15(2): 155–166
Stoodley P, Sauer K, Davies D G, Costerton J W. Biofilms as complex differentiated communities. Annual Review of Microbiology, 2002, 56(1): 187–209
Van Houdt R, Michiels C W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology, 2005, 156(5–6): 626–633
Bullitt E, Makowski L. Structural polymorphism of bacterial adhesion pili. Nature, 1995, 373(6510): 164–167
Thomas W E, Nilsson L M, Forero M, Sokurenko E V, Vogel V. Shear-dependent “stick-and-roll” adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology, 2004, 53(5): 1545–1557
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 2009, 73(2): 310–347
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology & Biotechnology, 2007, 34(9): 577–588
Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the absorption of marine bacteria to surfaces. Journal of General Microbiology, 1971, 68(3): 337–348
Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE, 2012, 7(10): e46718
Renner L D, Weibel D B. Physicochemical regulation of biofilm formation. MRS bulletin/Materials Research Society, 2011, 36(5): 347–355
Harmsen M, Yang L, Pamp S J, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology and Medical Microbiology, 2010, 59(3): 253–268
Jayaraman A, Wood T K. Bacterial quorum sensing: Signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering, 2008, 10(1): 145–167
Ma L, Conover M, Lu H, Parsek M R, Bayles K, Wozniak D J. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens, 2009, 5(3): e1000354
Ryu J H, Beuchat L R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Applied and Environmental Microbiology, 2005, 71(1): 247–254
Prigent-Combaret C, Prensier G, Le Thi T T, Vidal O, Lejeune P, Dorel C. Developmental pathway for biofilm formation in curliproducing Escherichia coli strains:Rrole of flagella, curli and colanic acid. Environmental Microbiology, 2000, 2(4): 450–464
Hammer B K, Bassler B L. Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology, 2003, 50(1): 101–104
Tischler A D, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molecular Microbiology, 2004, 53(3): 857–869
Berk V, Fong J C N, Dempsey G T, Develioglu O N, Zhuang X, Liphardt J, Yildiz F H, Chu S. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science, 2012, 337(6091): 236–239
Banin E, Vasil M L, Greenberg E P. Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11076–11081
Barrio A F G, Zuo R, Hashimoto Y, Yang L, Bentley W E, Wood T K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology, 2006, 188(1): 305–316
Wang X, Preston J F, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. Journal of Bacteriology, 2004, 186(9): 2724–2734
Jackson D W, Suzuki K, Oakford L, Simecka J W, Hart M E, Romeo T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. Journal of Bacteriology, 2002, 184(1): 290–301
Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades J R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, 2001, 183(9): 2888–2896
Pierce C G, Uppuluri P, Lopez-Ribot J L. A method for the formation of Candida biofilms in 96 well microtiter plates and its application to antifungal susceptibility testing. In: Gupta V K, Tuohy M G, Ayyachamy M A, et al., eds. Laboratory Protocols in Fungal Biology. Berlin: Springer, 2013, 217–223
Ghigo J M. Natural conjugative plasmids induce bacterial biofilm development. Nature, 2001, 412(6845): 442–445
Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 1998, 30(2): 285–293
Klausen M, Heydorn A, Ragas P, Lambersten L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology, 2003, 48(6): 1511–1524
Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Extracellular DNA required for bacterial biofilm formation. Science, 2002, 295(5559): 1487
An Y H, Friedman R J. An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research, 1998, 43(3): 338–348
MacKintosh E E, Patel J D, Marchant R E, Anderson J M. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. Journal of Biomedical Materials Research. Part A, 2006, 78(4): 836–842
Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. Journal of Bacteriology, 2005, 187(24): 8237–8246
Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. FEMS Microbiology Reviews, 2000, 24(5): 661–671
Stewart P S, Franklin M J. Physiological heterogeneity in biofilms. Nature Reviews. Microbiology, 2008, 6(3): 199–210
Weibel D B, Diluzio W R, Whitesides G M. Microfabrication meets microbiology. Nature Reviews. Microbiology, 2007, 5(3): 209–218
O’Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 1998, 30(2): 295–304
Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek M R, Tolker-Nielsen T, Givskov M, Molin S. Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology, 2002, 68(4): 2008–2017
Reisner A, Haagensen J A, Schembri M A, Zechner E L, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology, 2003, 48(4): 933–946
Corona-Izquierdo F P, Membrillo-Hernandez J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiology Letters, 2002, 211(1): 105–110
Schembri M A, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Molecular Microbiology, 2003, 48(1): 253–267
Ling H, Kang A, Tan M H, Qi X, Chang M W. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12. Biochemical and Biophysical Research Communications, 2010, 401(4): 521–526
Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280(5361): 295–298
Baca H K, Ashley C, Carnes E, Lopez D, Flemming J, Dunphy D, Singh S, Chen Z, Liu N, Fan H, Lopez G P, Brozik S M, Werner-Washburne M, Brinker C J. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science, 2006, 313(5785): 337–341
Harper J C, Khirpin C Y, Carnes E C, Ashley C E, Lopez D M, Savage T, Jones H D T, Davis R W, Nunez D E, Brinker L M, Kaehr B, Brozik S M, Brinker C J. Cell-directed integration into three-dimensional lipid-silica nanostructured matrices. ACS Nano, 2010, 4(10): 5539–5550
Lu Y F, Fan H Y, Stump A, Ward T L, Rieker T, Brinker C J. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398(6724): 223–226
Carnes E C, Lopez D M, Donegan N P, Cheung A, Gresham H, Timmins G S, Brinker J. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chemical Biology, 2010, 6(1): 41–45
Wessel A K, Hmelo L, Parsek M R, Whiteley M. Going local: Technologies for exploring bacterial microenvironments. Nature Reviews. Microbiology, 2013, 11(5): 337–348
Falconnet D, Csucs G, Grandin H M, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials, 2006, 27(16): 3044–3063
Leong K, Boardman A K, Ma H, Jen A K. Single-cell patterning and adhesion on chemically engineered poly(dimethylsiloxane) surface. Langmuir, 2009, 25(8): 4615–4620
Takeuchi S, DiLuzio W R, Weibel D B, Whitesides G M. Controlling the shape of filamentous cells of Escherichia coli. Nano Letters, 2005, 5(9): 1819–1823
Hochbaum A I, Aizenberg J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Letters, 2010, 10(9): 3717–3721
Kim S H, Yamamoto T, Fourmy D, Fujii T. An electroactive microwell array for trapping and lysing single-bacterial cells. Biomicrofluidics, 2011, 5(2): 024114–024117
Rettig J R, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Analytical Chemistry, 2005, 77(17): 5628–5634
Lovchik R, Von Arx C, Viviani A, Delamarche E. Cellular microarrays for use with capillary-driven microfluidics. Analytical and Bioanalytical Chemistry, 2008, 390(3): 801–808
Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry, 2006, 78(14): 4925–4930
Probst C, Grunberger A, Wiechert W, Kohlheyer D. Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines, 2013, 4(4): 357–369
Balaban N Q, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science, 2004, 305(5690): 1622–1625
Boedicker J Q, Vincent M E, Ismagilov R F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie International Edition, 2009, 48(32): 5908–5911
Churski K, Kaminski T S, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel D B, Garstecki P. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip, 2012, 12(9): 1629–1637
Schmitz C H, Rowat A C, Koster S, Weitz D A. Dropspots: A picoliter array in a microfluidic device. Lab on a Chip, 2009, 9(1): 44–49
Leung K, Zahn H, Leaver T, Konwar K M, Hanson N W, Page A P, Lo C C, Chain P S, Hallam S J, Hansen C L. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): 7665–7670
Bai Y P, Patil S N, Bowden S D, Poulter S, Pan J, Salmond G P C, Welch M, Huck W T S, Abell C. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system. International Journal of Molecular Sciences, 2013, 14(5): 10570–10581
Kim J H, Lee D Y, Hwang J, Jung H I. Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid Nanofluid, 2009, 7(6): 829–839
Eun Y J, Utada A S, Copeland M F, Takeuchi S, Weibel D B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chemical Biology, 2011, 6(3): 260–266
Voskerician G, Shive M S, Shawgo R S, Von Recum H, Anderson J M, Cima M J, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials, 2003, 24(11): 1959–1967
Song H, Ismagilov R F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. Journal of the American Chemical Society, 2003, 125(47): 14613–14619
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001, 86(18): 4163–4166
Baret J C, Miler O J, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels M L, Hutchison J B, Agresti J J, Link D R, Weitz D A, Griffiths A D. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab on a Chip, 2009, 9(13): 1850–1858
Ahn K, Kerbage C, Hunt T P, Westervelt R M, Link D R, Weitz D A. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters, 2006, 88(2): 024104-1–024104-3
Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Analytical Chemistry, 2010, 82(8): 3183–3190
Weibel D B, Lee A, Mayer M, Brady S F, Bruzewicz D, Yang J, Diluzio W R, Clardy J, Whitesides G M. Whitesides. Bacterial printing press that regenerates its ink: Contact-printing bacteria using hydrogel stamps. Langmuir, 2005, 21(14): 6436–6442
Yamazoe H, Tanabe T. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. Journal of Biomedical Materials Research. Part A, 2009, 91(4): 1202–1209
Merrin J, Leibler S, Chuang J S. Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One, 2007, 2(7): e663-1–e663-7
Liberski A R, Delaney J T, Schuber U S. “One cell-one well”: A new approach to inkjet printing single cell microarrays. ACS Combinatorial Science, 2011, 13(2): 190–195
Choi W S, Ha D, Park S, Kim T. Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials, 2011, 32(10): 2500–2507
Kaehr B, Shear J B. Mask-directed multiphoton lithography. Journal of the American Chemical Society, 2007, 129(7): 1904–1905
Connell J L, Wessel A K, Parsek M R, Ellington A D, Whiteley M, Shear J B. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio, 2010, 1(4): e00202–00210
Connell J L, Ritschdorff E T, Whiteley M, Shear J B. 3D printing of microscopic bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18380–18385
Flickinger S T, Copeland M F, Downes E M, Braasch A T, Tuson H H, Eun Y J, Weibel D B. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. Journal of the American Chemical Society, 2011, 133(15): 5966–5975
Timp W, Mirsaidov U, Matsudaira P, Timp G. Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab on a Chip, 2009, 9(7): 925–934
Meyer A, Megerle J A, Kuttler C, Muler J, Aguilar C, Eber L, Hense B A, Radler J O. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Physical Biology, 2012, 9(2): 026007–026010
Hill R T, Lyon J L, Allen R, Stevenson K J, Shear J B. Microfabrication of three-dimensional bioelectronic architectures. Journal of the American Chemical Society, 2005, 127(30): 10707–10711
Kaehr B, Allen R, Javier D J, Currie J, Shear J B. Guiding neuronal development with in situ microfabrication. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16104–16108
Kaehr B, Shear J B. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(26): 8850–8854
Mashburn L M, Jett A M, Akins D R, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. Journal of Bacteriology, 2005, 187(2): 554–566
Dilanji G E, Langebrake J B, Leenheer P D, Hagen S J. Quorum activation at a distance: Spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. Journal of the American Chemical Society, 2012, 134(12): 5618–5626
Quist A P, Pavlovic E, Oscarsson S. Recent advances in microcontact printing. Analytical and Bioanalytical Chemistry, 2005, 381(3): 591–600
Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R. Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials, 2004, 25(7–8): 1349–1353
Hou S, Burton E A, Simon K A, Blodgett D, Luk Y Y, Ren D C. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Applied and Environmental Microbiology, 2007, 73(13): 4300–4307
St John PM, Davis R, Cady N, Czajka J, Batt C A, Craighead H G. Diffraction-based cell detection using a microcontact printed antibody grating. Analytical Chemistry, 1998, 70(6): 1108–1111
Morhard F, Pipper J, Dahint R, Grunze M. Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sensors and Actuators. B, Chemical, 2000, 70(1–3): 232–242
Howell S W, Inerowicz H D, Regnier F E, Reifenberger R. Pattern protein microarrays for bacterial detection. Langmuir, 2003, 19(2): 436–439
Suh K Y, Khademhosseini A, Yoo P J, Langer R. Patterning and separating infected bacteria using host-parasite and virus-antibody interactions. Biomedical Microdevices, 2004, 6(3): 223–229
Sun K, Xie Y, Ye D, Zhao Y, Cui Y, Long F, Zhang W, Jiang X. Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir, 2012, 28(4): 2131–2136
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005, 105(4): 1103–1169
Rowan B, Wheeler M A, Crooks R M. Patterning bacteria within hyperbranched polymer film templates. Langmuir, 2002, 18(25): 9914–9917
Rozhok S, Shen C K, Littler P L, Fan Z, Liu C, Mirkin C A, Holz R C. Methods for fabricating microarrays of motile bacteria. Small, 2005, 1(4): 445–451
Hou S, Burton E A, Wu R L, Luk Y Y, Ren D. Prolonged control of patterned biofilm formation by bio-inert surface chemistry. Chemical Communications, 2009, 10: 1207–1209
Gu H, Hou S, Yongyat C, De Tore S, Ren D C. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir, 2013, 29(35): 11145–11153
Pate K, Wilson M, Parkin I P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry, 2009, 19(23): 3819–3831
Bixler G D, Bhushan B. Biofouling: Lessons from nature. Philosophical Transactions A Mathematical Physcial &. Engineering and Science, 2012, 370(1967): 2381–2417
Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F. Recent advances in designing superhydrophobic surfaces. Journal of Colloid and Interface Science, 2013, 402: 1–18
Kamegawa T, Shimizu Y, Yamashita H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Advanced Materials, 2012, 24(27): 3697–3700
Wu Z P, Xu Q F, Wang J N, Ma J. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties. Journal of Materials Science and Technology, 2010, 26(1): 20–26
Shang H M, Wang Y, Limmer S J, Chou T P, Takahashi K, Cao G Z. Optically transparent superhydrophobic silica-based films. Thin Solid Films, 2005, 472(1–2): 37–43
Ling X Y, Phang I Y, Vancso G J, Huskens J, Reinhoudt D N. Stable and transparent superhydrophobic nanoparticle films. Langmuir, 2009, 25(5): 3260–3263
Bravo J, Zhai L, Wu Z, Cohen R E, Rubner M F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir, 2007, 23(13): 7293–7298
Yang J, Zhang Z Z, Men X H, Xu X H. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Applied Surface Science, 2009, 255(22): 9244–9247
Wu D, Ming W, Benthem V R. Width. Superhydrophobic fluorinated polyurethane films. Journal of Adhesion Science and Technology, 2008, 22(15): 1869–1881
Coulson S R, Woodward I, Badyal J P S, Brewer S A, Willis C. Super-repellent composite fluoropolymer surfaces. Journal of Physical Chemistry B, 2000, 104(37): 8836–8840
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1–8
Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2011, 2: 152–161
Gao L C, McCarthy T J. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir, 2006, 22(7): 2966–2967
Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004, 20(9): 3517–3519
Ganesh V A, Raut H K, Nair A S, Ramakrishna S. A review on self-cleaning coatings. Journal of Materials Chemistry, 2011, 21(41): 16304–16322
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477(7365): 443–447
Liu K S, Jiang L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research, 2012, 42(1): 231–263
Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013, 3(3): 671–690
Kirschner C M, Brennan A B. Bio-inspired antifouling strategies. Annual Review of Materials Research, 2012, 42(1): 211–229
Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling, 2006, 22(5): 339–360
Pernites R B, Santos C M, Maldonado M, Ponnapati R R, Rodrigues D F, Advincula R C. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films. Chemistry of Materials, 2012, 24(5): 870–880
Moafi H F, Shojaie A F, Zanjanchi M A. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films, 2011, 519(11): 3641–3646
Zhang L, Diller R, Bahnemann D, Vormoor M. Photo-induced hydrophilicity and self-cleaning: Models and reality. Energy & Environmental Science., 2012, 5(6): 7491–7507
Ganesh V A, Nair A S, Raut H K, Walsh T M, Ramakrishna S. Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances, 2012, 2(5): 2067–2072
Xi B, Verma L K, Li J, Bhatia C S, Danner J, Yang H, Zeng H C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Applied Materials & Interfaces, 2012, 4(2): 1093–1102
Afzai S, Daoud W A, Langford S J. Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Applied Materials & Interfaces, 2013, 5(11): 4753–4759
Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research, 2001, 58(1): 97–101
Joshi A, Punyani S, Borca-Tascuic T, Kane R S. Nanotube-assisted protein deactivation. Nature Nanotechnology, 2008, 3(1): 41–45
Chung K K, Schumacher J F, Sampson E M, Burne R A, Antonelli P J, Brennan A B. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases, 2007, 2(2): 89–94
Carman M L, Estes T G, Feinberg A W, Schumacher J F, Wilkerson W, Wilson L H, Callow M E, Callow J A, Brennan A B. Engineered antifouling microtopographies — Correlating wettability with cell attachment. Biofouling, 2006, 22(1): 1–11
Schumacher J F, Carman M L, Estes T G, Feinberg A W, Wilson L H, Callow M E, Callow J A, Finlay J A, Brennan A B. Engineered antifouling microtopographies — Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling, 2007, 23(1): 55–62
He X, Aizenberg M, Kuksenok O, Zarzar L D, Shastri A, Balazs A C, Aizenberg J. Synthetic homeostatic materials with chemomechano-chemical self-regulation. Nature, 2012, 487(7406): 214–218
Stuart M A C, Huck W T S, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9(2): 101–113
Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. A reversibly switching surfaces. Science, 2003, 299(5605): 371–374
Urban A M, Urban M W. Stimuli-responsive polymeric films and coatings. American Chemical Society, 2005, 912: 1
Ista L K, Mendez S, Lopez G P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling, 2010, 26(1): 111–118
Ista L K, Perez-Luna V H, Lopez G P. Surface-grafted, environmentally sensitive polymers for biofilm release. Applied and Environmental Microbiology, 1999, 65(4): 1603–1609
Ista L K, Lopez G P. Lower critical solubility temperature materials as biofouling release agents. Journal of Industrial Microbiology & Biotechnology, 1998, 20: 121–125
Ista L K, Mendez S, Perez-Luna V H, Lopez G P. Synthesis of poly (N-isopropylacrylamide) on initiator-modified self-assembled monolayers. Langmuir, 2001, 17(9): 2552–2555