Materials and membrane technologies for water and energy sustainability
Tài liệu tham khảo
Afgan, 2008, Sustainability concept for energy, water and environment systems, 25
Evans, 2009, Assessment of sustainability indicators for renewable energy technologies, Renew. Sust. Energ. Rev., 13, 1082, 10.1016/j.rser.2008.03.008
Ghaffour, 2009, The challenge of capacity-building strategies and perspectives for desalination for sustainable water use in MENA, Desalin. Water Treat., 5, 48, 10.5004/dwt.2009.564
G.W.I.G.I. DesalData
El-Ghonemy, 2012, RETRACTED: future sustainable water desalination technologies for the Saudi Arabia: a review, Renew. Sust. Energ. Rev., 16, 6566, 10.1016/j.rser.2012.07.026
Ghaffour, 2013, Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability, Desalination, 309, 197, 10.1016/j.desal.2012.10.015
Goh, 2015, Review: is interplay between nanomaterial and membrane technology the way forward for desalination?, J. Chem. Technol. Biotechnol., 90, 971, 10.1002/jctb.4531
Karagiannis, 2008, Water desalination cost literature: review and assessment, Desalination, 223, 448, 10.1016/j.desal.2007.02.071
Lee, 2011, A review of reverse osmosis membrane materials for desalination—development to date and future potential, J. Membr. Sci., 370, 1, 10.1016/j.memsci.2010.12.036
Likhachev, 2013, Large-scale water desalination methods: a review and new perspectives, Desalin. Water Treat., 51, 2836, 10.1080/19443994.2012.750792
Matsuura, 2001, Progress in membrane science and technology for seawater desalination—a review, Desalination, 134, 47, 10.1016/S0011-9164(01)00114-X
Miller, 2003, Review of water resources and desalination technologies
Nair, 2013, Water desalination and challenges: the Middle East perspective: a review, Desalin. Water Treat., 51, 2030, 10.1080/19443994.2013.734483
Pangarkar, 2011, Reverse osmosis and membrane distillation for desalination of groundwater: a review, Int. Sch. Res. Notices ISRN Mater. Sci., 2011
Weinrich, 2013, Recent advances in measuring and modeling reverse osmosis membrane fouling in seawater desalination: a review, J. Water Reuse Desalin., 3, 85, 10.2166/wrd.2013.056
Khatib, 2002, Water to value-produced water management for sustainable field development of mature and green fields
Çakmakce, 2008, Desalination of produced water from oil production fields by membrane processes, Desalination, 222, 176, 10.1016/j.desal.2007.01.147
Webb, 2009, Desalination of oilfield-produced water at the San Ardo water reclamation facility, CA
He, 2008, Technology review: treating oilfield wastewater, Filtr. Sep., 45, 14, 10.1016/S0015-1882(08)70174-5
Liu, 2007, Factors determining the reverse osmosis performance of zeolite membranes on produced water purification
Zaidi, 1992, The use of micro/ultrafiltration for the removal of oil and suspended solids from oilfield brines, Water Sci. Technol., 25, 163, 10.2166/wst.1992.0245
Xu, 2008, Beneficial use of co-produced water through membrane treatment: technical-economic assessment, Desalination, 225, 139, 10.1016/j.desal.2007.04.093
Burnett, 2004, 1
Chen, 1991, Removal of oil, grease, and suspended solids from produced water with ceramic crossflow microfiltration, SPE Prod. Eng., 6, 131, 10.2118/20291-PA
Ashaghi, 2007, Ceramic ultra-and nanofiltration membranes for oilfield produced water treatment: a mini review, Open Environ. J., 1, 1, 10.2174/1874233500701010001
Bader, 2007, Seawater versus produced water in oil-fields water injection operations, Desalination, 208, 159, 10.1016/j.desal.2006.05.024
Lee, 2005, Treatment of produced water with an ultrafiltration (UF) membrane—a field trial
Bilstad, 1996, Membrane separation of produced water, Water Sci. Technol., 34, 239, 10.1016/S0273-1223(96)00810-4
Li, 2006, Treatment of oily wastewater by organic–inorganic composite tubular ultrafiltration (UF) membranes, Desalination, 196, 76, 10.1016/j.desal.2005.11.021
Hickenbottom, 2013, Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations, Desalination, 312, 60, 10.1016/j.desal.2012.05.037
Shaffer, 2013, Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions, Environ. Sci. Technol., 47, 9569, 10.1021/es401966e
Breit
Alklaibi, 2005, Membrane-distillation desalination: status and potential, Desalination, 171, 111, 10.1016/j.desal.2004.03.024
Curcio, 2005, Membrane distillation and related operations—a review, Sep. Purif. Rev., 34, 35, 10.1081/SPM-200054951
Souhaimi, 2011
Alkhudhiri, 2012, Membrane distillation: a comprehensive review, Desalination, 287, 2, 10.1016/j.desal.2011.08.027
Wang, 2015, Recent advances in membrane distillation processes: membrane development, configuration design and application exploring, J. Membr. Sci., 474, 39, 10.1016/j.memsci.2014.09.016
Al-Obaidani, 2008, Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation, J. Membr. Sci., 323, 85, 10.1016/j.memsci.2008.06.006
Cath, 2006, Forward osmosis: principles, applications, and recent developments, J. Membr. Sci., 281, 70, 10.1016/j.memsci.2006.05.048
Ge, 2013, Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future, J. Membr. Sci., 442, 225, 10.1016/j.memsci.2013.03.046
MingáLing, 2011, Facile synthesis of thermosensitive magnetic nanoparticles as “smart” draw solutes in forward osmosis, Chem. Commun., 47, 10788, 10.1039/c1cc13944d
Li, 2013, Forward osmosis desalination using polymer hydrogels as a draw agent: influence of draw agent, feed solution and membrane on process performance, Water Res., 47, 209, 10.1016/j.watres.2012.09.049
Ge, 2012, Exploration of polyelectrolytes as draw solutes in forward osmosis processes, Water Res., 46, 1318, 10.1016/j.watres.2011.12.043
Shaffer, 2012, Seawater desalination for agriculture by integrated forward and reverse osmosis: improved product water quality for potentially less energy, J. Membr. Sci., 415, 1, 10.1016/j.memsci.2012.05.016
Holloway, 2007, Forward osmosis for concentration of anaerobic digester centrate, Water Res., 41, 4005, 10.1016/j.watres.2007.05.054
Martinetti, 2009, High recovery of concentrated RO brines using forward osmosis and membrane distillation, J. Membr. Sci., 331, 31, 10.1016/j.memsci.2009.01.003
Elimelech, 2011, The future of seawater desalination: energy, technology, and the environment, Science, 333, 712, 10.1126/science.1200488
Kim, 2011, Experimental study of a 4040 spiral-wound forward-osmosis membrane module, Environ. Sci. Technol., 45, 7737, 10.1021/es202175m
McCutcheon, 2005, A novel ammonia–carbon dioxide forward (direct) osmosis desalination process, Desalination, 174, 1, 10.1016/j.desal.2004.11.002
R.A. Neff, Solvent extractor, Google Patents, 1964.
Boo, 2015, Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis, J. Membr. Sci., 473, 302, 10.1016/j.memsci.2014.09.026
A.D. Wilson, F.F. Stewart, M.L. Stone, Methods and systems for treating liquids using switchable solvents, Google Patents, 2012.
Stone, 2013, Switchable polarity solvents as draw solutes for forward osmosis, Desalination, 312, 124, 10.1016/j.desal.2012.07.034
Beltrán, 2006, Water desalination for agricultural applications, 5, 48
Barron, 2014, Feasibility assessment of desalination application in Australian traditional agriculture, Desalination, 364, 33, 10.1016/j.desal.2014.07.024
Zarzo, 2013, Spanish experience in desalination for agriculture, Desalin. Water Treat., 51, 53, 10.1080/19443994.2012.708155
Burn, 2015, Desalination techniques—a review of the opportunities for desalination in agriculture, Desalination, 364, 2, 10.1016/j.desal.2015.01.041
Tester, 2010, Breeding technologies to increase crop production in a changing world, Science, 327, 818, 10.1126/science.1183700
Desaldata
Guerreiro, 2002, Toxicidad del boro en las plantas, Encuentros Biol., 82, 1
Dunne, 2012, Water water everywhere and not a drop to drink, nor do i know its whereabouts
Juby, 1992, Membrane desalination of service water from gold mines, J. South Afr. Inst. Min. Metall., 92, 69
Haig-Smillie, 1974, Sea water flotation, 263
Poling, 1995, Importance of geochemistry: the black angel lead‐zinc mine, Greenland, Mar. Georesour. Geotechnol., 13, 101, 10.1080/10641199509388280
Weirtz, 2009, When best water use efficiency is not enough, what can the mining industry do?, 15
Chadwick, 2009, Copper recovery, Min. Mag., 23
Lévy, 2006, Water use in the mining industry—threats and opportunities
Harries, 1985, A field trial of seeded reverse osmosis for the desalination of a scaling-type mine water, Desalination, 56, 227, 10.1016/0011-9164(85)85027-X
Plessis, 1992, Tubular reverse osmosis treatment of Secunda mine water: a pilot plant investigation, Water Sci. Technol., 25, 193, 10.2166/wst.1992.0247
Bowell, 2004, A review of sulfate removal options for mine waters, 75
Juby, 1990, Evaluation of electrodialysis reversal for desalination of brackish mine water, 179, 1190
Sivakumar, 2013, Mine water treatment using a vacuum membrane distillation system, APCBEE Proc., 5, 157, 10.1016/j.apcbee.2013.05.028
Juby, 1996, Desalination of calcium sulphate scaling mine water: design and operation of the SPARRO process, Water S. A., 22, 161
Pulles, 1992, Development of the slurry precipitation and recycle reverse osmosis (SPARRO) technology for desalinating scaling mine waters, Water Sci. Technol., 25, 177, 10.2166/wst.1992.0246
Barakat, 2011, New trends in removing heavy metals from industrial wastewater, Arab. J. Chem., 4, 361, 10.1016/j.arabjc.2010.07.019
Jeppesen, 2009, Metal recovery from reverse osmosis concentrate, J. Clean. Prod., 17, 703, 10.1016/j.jclepro.2008.11.013
Le Dirach, 2005, Extraction of strategic materials from the concentrated brine rejected by integrated nuclear desalination systems, Desalination, 182, 449, 10.1016/j.desal.2005.02.037
Achilleas Tsamis, 2015
Fu, 2011, Removal of heavy metal ions from wastewaters: a review, J. Environ. Manag., 92, 407, 10.1016/j.jenvman.2010.11.011
Chai, 1997, Pilot scale membrane separation of electroplating waste water by reverse osmosis, J. Membr. Sci., 123, 235, 10.1016/S0376-7388(96)00217-7
Kurniawan, 2006, Physico-chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J., 118, 83, 10.1016/j.cej.2006.01.015
Abhanga, 2013, Nanofiltration for recovery of heavy metal ions from waste water—a review, Liver, 1, 29
Landaburu-Aguirre, 2009, The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: statistical design of experiments, Desalination, 240, 262, 10.1016/j.desal.2007.11.077
Li, 2009, Recovery and reuse of surfactant SDS from a MEUF retentate containing Cd2+ or Zn2+ by ultrafiltration, J. Membr. Sci., 337, 92, 10.1016/j.memsci.2009.03.030
Samper, 2009, Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS), Sep. Purif. Technol., 65, 337, 10.1016/j.seppur.2008.11.013
Aroua, 2007, Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration, J. Hazard. Mater., 147, 752, 10.1016/j.jhazmat.2007.01.120
Kim, 2005, Humic substance-enhanced ultrafiltration for removal of cobalt, J. Hazard. Mater., 122, 31, 10.1016/j.jhazmat.2005.03.043
Labanda, 2009, Feasibility study on the recovery of chromium (III) by polymer enhanced ultrafiltration, Desalination, 249, 577, 10.1016/j.desal.2008.06.031
Molinari, 2008, Selective separation of copper (II) and nickel (II) from aqueous media using the complexation–ultrafiltration process, Chemosphere, 70, 341, 10.1016/j.chemosphere.2007.07.041
Trivunac, 2006, Removal of heavy metal ions from water by complexation-assisted ultrafiltration, Chemosphere, 64, 486, 10.1016/j.chemosphere.2005.11.073
Chan, 2008, Reverse osmosis removal of arsenic residues from bioleaching of refractory gold concentrates, Miner. Eng., 21, 272, 10.1016/j.mineng.2007.10.003
Ipek, 2005, Removal of Ni (II) and Zn (II) from an aqueous solutionby reverse osmosis, Desalination, 174, 161, 10.1016/j.desal.2004.09.009
Mohsen-Nia, 2007, Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes, Desalination, 217, 276, 10.1016/j.desal.2006.01.043
Zhang, 2009, Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body, J. Environ. Sci., 21, 764, 10.1016/S1001-0742(08)62338-4
Murthy, 2008, Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters, J. Hazard. Mater., 160, 70, 10.1016/j.jhazmat.2008.02.085
Muthukrishnan, 2008, Effect of pH on rejection of hexavalent chromium by nanofiltration, Desalination, 219, 171, 10.1016/j.desal.2007.04.054
Wang, 2006, Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate, J. Membr. Sci., 281, 307, 10.1016/j.memsci.2006.03.045
Zhu, 2014, Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater, J. Membr. Sci., 456, 117, 10.1016/j.memsci.2014.01.001
Gao, 2014, Polyethyleneimine (PEI) cross-linked P84 nanofiltration (NF) hollow fiber membranes for Pb2+ removal, J. Membr. Sci., 452, 300, 10.1016/j.memsci.2013.10.036
Ahmad, 2010, A study on acid reclamation and copper recovery using low pressure nanofiltration membrane, Chem. Eng. J., 156, 257, 10.1016/j.cej.2009.10.014
Cséfalvay, 2009, Recovery of copper from process waters by nanofiltration and reverse osmosis, Desalination, 240, 132, 10.1016/j.desal.2007.11.070
Figoli, 2010, Influence of operating parameters on the arsenic removal by nanofiltration, Water Res., 44, 97, 10.1016/j.watres.2009.09.007
Nguyen, 2009, Performance and mechanism of arsenic removal from water by a nanofiltration membrane, Desalination, 245, 82, 10.1016/j.desal.2008.04.047
Eriksson, 1988, Nanofiltration extends the range of membrane filtration, Environ. Prog., 7, 58, 10.1002/ep.3300070116
Cicek, 1998, Using a membrane bioreactor to reclaim wastewater, J. Am. Water Works Assoc., 90, 105, 10.1002/j.1551-8833.1998.tb08538.x
Lozier, 2000, Using a membrane bioreactor/reverse osmosis system for indirect water reuse
Guihe, 2008, Membrane bioreactor for water reclamation in Singapore, Water Pract. Technol., 3
Cicek, 2003, A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater, Can. Biosyst. Eng., 45, 6.37
Rosenberger, 2002, Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water, Water Res., 36, 413, 10.1016/S0043-1354(01)00223-8
Ahn, 1999, Retrofitting municipal sewage treatment plants using an innovative membrane–bioreactor system, Desalination, 124, 279, 10.1016/S0011-9164(99)00113-7
Fan, 1996, Nitrification and mass balance with a membrane bioreactor for municipal wastewater treatment, Water Sci. Technol., 34, 129, 10.1016/0273-1223(96)00502-1
Muller, 1995, Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration, Water Res., 29, 1179, 10.1016/0043-1354(94)00267-B
Lorenz, 2002, Phosphorus removal in a membrane reactor system: a full-scale wastewater demonstration study, Proc. Water Environ. Fed., 2002, 406, 10.2175/193864702784247864
Manam, 1996, Membrane bioreactors
Parker, 2014, Membrane technology plays key role in waterless hygienic toilet, Membr. Technol., 2014, 8, 10.1016/S0958-2118(14)70255-1
Perez Lopez, 2014
Hogetsu, 1992, High rate anaerobic digestion of wool scouring wastewater in a digester combined with membrane filter, Water Sci. Technol., 25, 341, 10.2166/wst.1992.0166
Minami, 1994, A trial of high performance anaerobic treatment on wastewater from a kraft pulp mill, Desalination, 98, 273, 10.1016/0011-9164(94)00152-9
Knoblock, 1994, Membrane biological reactor system for treatment of oily wastewaters, Water Environ. Res., 133, 10.2175/WER.66.2.6
Zaloum, 1994, Membrane bioreactor treatment of oily wastes from a metal transformation mill, Water Sci. Technol., 30, 21, 10.2166/wst.1994.0436
Ross, 1992, Practical application of the ADUF process to the full-scale treatment of a maize-processing effluent, Water Sci. Technol., 25, 27, 10.2166/wst.1992.0235
Nghiem, 2004, Trace contaminant removal with nanofiltration, 479
Hai, 2016, Trace organic contaminants removal by combined processes for wastewater reuse, 45, 39
Cirja, 2008, Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR), Rev. Environ. Sci. Biotechnol., 7, 61, 10.1007/s11157-007-9121-8
Jones, 2005, Human pharmaceuticals in wastewater treatment processes, Crit. Rev. Environ. Sci. Technol., 35, 401, 10.1080/10643380590956966
Hai, 2011, Is halogen content the most important factor in the removal of halogenated trace organics by MBR treatment?, Bioresour. Technol., 102, 6299, 10.1016/j.biortech.2011.02.019
Kimura, 2005, Removal of pharmaceutical compounds by submerged membrane bioreactors (MBRs), Desalination, 178, 135, 10.1016/j.desal.2004.11.033
Tadkaew, 2011, Removal of trace organics by MBR treatment: the role of molecular properties, Water Res., 45, 2439, 10.1016/j.watres.2011.01.023
Castiglioni, 2006, Removal of pharmaceuticals in sewage treatment plants in Italy, Environ. Sci. Technol., 40, 357, 10.1021/es050991m
Hai, 2011, Removal of micropollutants by membrane bioreactor under temperature variation, J. Membr. Sci., 383, 144, 10.1016/j.memsci.2011.08.047
Vieno, 2005, Seasonal variation in the occurrence of pharmaceuticals in effluents from a sewage treatment plant and in the recipient water, Environ. Sci. Technol., 39, 8220, 10.1021/es051124k
Stasinakis, 2009, Diuron biodegradation in activated sludge batch reactors under aerobic and anoxic conditions, Water Res., 43, 1471, 10.1016/j.watres.2008.12.040
Tadkaew, 2010, Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor, Bioresour. Technol., 101, 1494, 10.1016/j.biortech.2009.09.082
Urase, 2005, Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors, Desalination, 178, 107, 10.1016/j.desal.2004.11.031
Zwiener, 2003, Short-term tests with a pilot sewage plant and biofilm reactors for the biological degradation of the pharmaceutical compounds clofibric acid, ibuprofen, and diclofenac, Sci. Total Environ., 309, 201, 10.1016/S0048-9697(03)00002-0
Kim, 2005, Removal of antibiotics in wastewater: effect of hydraulic and solid retention times on the fate of tetracycline in the activated sludge process, Environ. Sci. Technol., 39, 5816, 10.1021/es050006u
Bernhard, 2006, Biodegradation of persistent polar pollutants in wastewater: comparison of an optimised lab-scale membrane bioreactor and activated sludge treatment, Water Res., 40, 3419, 10.1016/j.watres.2006.07.011
Clara, 2005, The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants, Water Res., 39, 97, 10.1016/j.watres.2004.08.036
Kreuzinger, 2004, Relevance of the sludge retention time (SRT) as design criteria for wastewater treatment plants for the removal of endocrine disruptors and pharmaceuticals from wastewater, Water Sci. Technol., 50, 149, 10.2166/wst.2004.0322
Abegglen, 2009, The fate of selected micropollutants in a single-house MBR, Water Res., 43, 2036, 10.1016/j.watres.2009.02.005
Clara, 2005, Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants, Water Res., 39, 4797, 10.1016/j.watres.2005.09.015
Hai, 2011, Removal of carbamazepine and sulfamethoxazole by MBR under anoxic and aerobic conditions, Bioresour. Technol., 102, 10386, 10.1016/j.biortech.2011.09.019
Joss, 2004, Removal of estrogens in municipal wastewater treatment under aerobic and anaerobic conditions: consequences for plant optimization, Environ. Sci. Technol., 38, 3047, 10.1021/es0351488
Kiso, 2002, Rejection properties of pesticides with a hollow fiber NF membrane (HNF-1), Desalination, 143, 147, 10.1016/S0011-9164(02)00236-9
Kiso, 2001, Effects of hydrophobicity and molecular size on rejection of aromatic pesticides with nanofiltration membranes, J. Membr. Sci., 192, 1, 10.1016/S0376-7388(01)00411-2
Reinhard, 1986, Removing trace organics by reverse osmosis using cellulose acetate and polyamide membranes, J. Am. Water Works Assoc., 78, 163, 10.1002/j.1551-8833.1986.tb05728.x
Berg, 1997, Removal of pesticides and other micropollutants by nanofiltration, Desalination, 113, 205, 10.1016/S0011-9164(97)00130-6
Boussahel, 2002, Effects of organic and inorganic matter on pesticide rejection by nanofiltration, Desalination, 145, 109, 10.1016/S0011-9164(02)00394-6
Van der Bruggen, 1998, Nanofiltration as a treatment method for the removal of pesticides from ground waters, Desalination, 117, 139, 10.1016/S0011-9164(98)00081-2
Agbekodo, 1996, Atrazine and simazine removal mechanisms by nanofiltration: influence of natural organic matter concentration, Water Res., 30, 2535, 10.1016/S0043-1354(96)00128-5
Nghiem, 2004, Estrogenic hormone removal from wastewater using NF/RO membranes, J. Membr. Sci., 242, 37, 10.1016/j.memsci.2003.12.034
Nghiem, 2004, Removal of natural hormones by nanofiltration membranes: measurement, modeling, and mechanisms, Environ. Sci. Technol., 38, 1888, 10.1021/es034952r
Agenson, 2003, Rejection mechanisms of plastic additives and natural hormones in drinking water treated by nanofiltration, Water Supply, 3, 311, 10.2166/ws.2003.0183
Weber, 2004, Efficiency of nanofiltration for the elimination of steroids from water, Water Sci. Technol., 50, 9, 10.2166/wst.2004.0302
Ternes, 2002, Removal of pharmaceuticals during drinking water treatment, Environ. Sci. Technol., 36, 3855, 10.1021/es015757k
Golet, 2002, Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland, Environ. Sci. Technol., 36, 3645, 10.1021/es0256212
Ternes, 2000, Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment, Environ. Sci. Technol., 34, 2741, 10.1021/es991118m
Khan, 2004, Modelling of pharmaceutical residues in Australian sewage by quantities of use and fugacity calculations, Chemosphere, 54, 355, 10.1016/j.chemosphere.2003.07.001
Kimura, 2003, Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes, J. Membr. Sci., 227, 113, 10.1016/j.memsci.2003.09.005
Sun, 2012, Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water, J. Membr. Sci., 401, 152, 10.1016/j.memsci.2012.01.046
Holloway, 2014, Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor, Environ. Sci. Technol., 48, 10859, 10.1021/es501051b
Cath, 2010, A multi-barrier osmotic dilution process for simultaneous desalination and purification of impaired water, J. Membr. Sci., 362, 417, 10.1016/j.memsci.2010.06.056
Hancock, 2011, Comprehensive bench-and pilot-scale investigation of trace organic compounds rejection by forward osmosis, Environ. Sci. Technol., 45, 8483, 10.1021/es201654k
Linares, 2011, Rejection of micropollutants by clean and fouled forward osmosis membrane, Water Res., 45, 6737, 10.1016/j.watres.2011.10.037
Al-Rifai, 2011, Removal of pharmaceuticals and endocrine disrupting compounds in a water recycling process using reverse osmosis systems, Sep. Purif. Technol., 77, 60, 10.1016/j.seppur.2010.11.020
Alturki, 2010, Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications, J. Membr. Sci., 365, 206, 10.1016/j.memsci.2010.09.008
Bellona, 2004, Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review, Water Res., 38, 2795, 10.1016/j.watres.2004.03.034
Cartagena, 2013, Reduction of emerging micropollutants, organic matter, nutrients and salinity from real wastewater by combined MBR–NF/RO treatment, Sep. Purif. Technol., 110, 132, 10.1016/j.seppur.2013.03.024
Dolar, 2012, Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR–RO, J. Hazard. Mater., 239, 64, 10.1016/j.jhazmat.2012.03.029
Nguyen, 2013, Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes, Int. Biodeterior. Biodegrad., 85, 474, 10.1016/j.ibiod.2013.03.014
Sahar, 2011, The use of RO to remove emerging micropollutants following CAS/UF or MBR treatment of municipal wastewater, Desalination, 273, 142, 10.1016/j.desal.2010.11.004
Zaviska, 2013, Nanofiltration membrane bioreactor for removing pharmaceutical compounds, J. Membr. Sci., 429, 121, 10.1016/j.memsci.2012.11.022
Achilli, 2009, The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes, Desalination, 239, 10, 10.1016/j.desal.2008.02.022
Alturki, 2012, Performance of a novel osmotic membrane bioreactor (OMBR) system: flux stability and removal of trace organics, Bioresour. Technol., 113, 201, 10.1016/j.biortech.2012.01.082
Alturki, 2013, Removal of trace organic contaminants by the forward osmosis process, Sep. Purif. Technol., 103, 258, 10.1016/j.seppur.2012.10.036
Cartinella, 2006, Removal of natural steroid hormones from wastewater using membrane contactor processes, Environ. Sci. Technol., 40, 7381, 10.1021/es060550i
Hai, 2011, Membrane biological reactors, 571
Lay, 2012, Effect of pharmaceuticals on the performance of a novel osmotic membrane bioreactor (OMBR), Sep. Sci. Technol., 47, 543, 10.1080/01496395.2011.630249
Phattaranawik, 2008, A novel membrane bioreactor based on membrane distillation, Desalination, 223, 386, 10.1016/j.desal.2007.02.075
Goh, 2013, Fouling and wetting in membrane distillation (MD) and MD-bioreactor (MDBR) for wastewater reclamation, Desalination, 323, 39, 10.1016/j.desal.2012.12.001
LaPara, 1999, Thermophilic aerobic biological wastewater treatment, Water Res., 33, 895, 10.1016/S0043-1354(98)00282-6
Wijekoon, 2014, Rejection and fate of trace organic compounds (TrOCs) during membrane distillation, J. Membr. Sci., 453, 636, 10.1016/j.memsci.2013.12.002
Wijekoon, 2014, A novel membrane distillation–thermophilic bioreactor system: biological stability and trace organic compound removal, Bioresour. Technol., 159, 334, 10.1016/j.biortech.2014.02.088
Judd, 2006, Principles and applications of membrane bioreactors in water and wastewater treatment
Le-Clech, 2006, Fouling in membrane bioreactors used in wastewater treatment, J. Membr. Sci., 284, 17, 10.1016/j.memsci.2006.08.019
Radjenović, 2008, Membrane bioreactor (MBR) as an advanced wastewater treatment technology, 37
Sombatsompop, 2007
Ciora, 2003, Ceramic membranes for environmental related applications, Fluid/Part. Sep. J., 15, 51
Hofs, 2011, Comparison of ceramic and polymeric membrane permeability and fouling using surface water, Sep. Purif. Technol., 79, 365, 10.1016/j.seppur.2011.03.025
Jin, 2010, Comparison of fouling characteristics in different pore-sized submerged ceramic membrane bioreactors, Water Res., 44, 5907, 10.1016/j.watres.2010.07.014
Scott, 1997, A bioreactor coupled to a membrane to provide aeration and filtration in ice-cream factory wastewater remediation, Water Res., 31, 69, 10.1016/S0043-1354(96)00234-5
Defrance, 1999, Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment, J. Membr. Sci., 152, 203, 10.1016/S0376-7388(98)00220-8
Holler, 2001, Treatment of urban wastewater in a membrane bioreactor at high organic loading rates, J. Biotechnol., 92, 95, 10.1016/S0168-1656(01)00351-0
Wisniewski, 1998, Floc size distribution in a membrane bioreactor and consequences for membrane fouling, Colloids Surf. A Physicochem. Eng. Asp., 138, 403, 10.1016/S0927-7757(96)03898-8
Choo, 1996, Membrane fouling mechanisms in the membrane-coupled anaerobic bioreactor, Water Res., 30, 1771, 10.1016/0043-1354(96)00053-X
Roberts, 2000, Application of the membrane biological reactor system for combined sanitary and industrial wastewater treatment, Int. Biodeterior. Biodegrad., 46, 37, 10.1016/S0964-8305(00)00058-5
Scholz, 2000, Treatment of oil contaminated wastewater in a membrane bioreactor, Water Res., 34, 3621, 10.1016/S0043-1354(00)00106-8
Mansouri, 2010, Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities, J. Mater. Chem., 20, 4567, 10.1039/b926440j
Pieracci, 2002, Increasing membrane permeability of UV-modified poly (ether sulfone) ultrafiltration membranes, J. Membr. Sci., 202, 1, 10.1016/S0376-7388(01)00624-X
Kaeselev, 2001, Photoinduced grafting of ultrafiltration membranes: comparison of poly (ether sulfone) and poly (sulfone), J. Membr. Sci., 194, 245, 10.1016/S0376-7388(01)00544-0
Livazovic, 2015, Cellulose multilayer membranes manufacture with ionic liquid, J. Membr. Sci., 490, 282, 10.1016/j.memsci.2015.05.009
Nunes, 1995, Dense hydrophilic composite membranes for ultrafiltration, J. Membr. Sci., 106, 49, 10.1016/0376-7388(95)00076-O
Chiang, 2012, A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes, J. Membr. Sci., 389, 76, 10.1016/j.memsci.2011.10.017
Fan, 2014, Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process, J. Membr. Sci., 452, 90, 10.1016/j.memsci.2013.10.026
Ghaemi, 2012, Fabrication and modification of polysulfone nanofiltration membrane using organic acids: morphology, characterization and performance in removal of xenobiotics, Sep. Purif. Technol., 96, 214, 10.1016/j.seppur.2012.06.008
Kong, 2011, Enhanced performance of inorganic-polyamide nanocomposite membranes prepared by metal-alkoxide-assisted interfacial polymerization, J. Membr. Sci., 366, 382, 10.1016/j.memsci.2010.10.026
Li, 2014, A novel composite nanofiltration membrane prepared with PHGH and TMC by interfacial polymerization, J. Membr. Sci., 466, 82, 10.1016/j.memsci.2014.04.034
Li, 2014, Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers, Desalination, 333, 59, 10.1016/j.desal.2013.11.035
Li, 2014, Surface fluorination of polyamide nanofiltration membrane for enhanced antifouling property, J. Membr. Sci., 455, 15, 10.1016/j.memsci.2013.12.060
Liu, 2014, Fabrication and characterization of positively charged hybrid ultrafiltration and nanofiltration membranes via the in-situ exfoliation of Mg/Al hydrotalcite, Desalination, 335, 78, 10.1016/j.desal.2013.12.015
Namvar-Mahboub, 2013, Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration, Sep. Purif. Technol., 119, 35, 10.1016/j.seppur.2013.09.003
Seman, 2010, Nanofiltration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization, J. Membr. Sci., 348, 109, 10.1016/j.memsci.2009.10.047
Seman, 2011, Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation, Desalination, 273, 36, 10.1016/j.desal.2010.09.038
Veerababu, 2014, Limiting thickness of polyamide–polysulfone thin-film-composite nanofiltration membrane, Desalination, 346, 19, 10.1016/j.desal.2014.05.007
Wei, 2013, Structure influence of hyperbranched polyester on structure and properties of synthesized nanofiltration membranes, J. Membr. Sci., 440, 67, 10.1016/j.memsci.2013.03.034
Zhang, 2014, Thin film interfacial cross-linking approach to fabricate a chitosan rejecting layer over poly (ether sulfone) support for heavy metal removal, Ind. Eng. Chem. Res., 54, 472, 10.1021/ie503809c
Bui, 2011, Electrospun nanofiber supported thin film composite membranes for engineered osmosis, J. Membr. Sci., 385, 10, 10.1016/j.memsci.2011.08.002
Daraei, 2012, Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu (II) removal from water, J. Membr. Sci., 415, 250, 10.1016/j.memsci.2012.05.007
Hou, 2014, Enzymatic degradation of bisphenol-A with immobilized laccase on TiO2 sol–gel coated PVDF membrane, J. Membr. Sci., 469, 19, 10.1016/j.memsci.2014.06.027
Mendret, 2013, Hydrophilic composite membranes for simultaneous separation and photocatalytic degradation of organic pollutants, Sep. Purif. Technol., 111, 9, 10.1016/j.seppur.2013.03.030
Stawikowska, 2013, Nanoparticle contrast agents to elucidate the structure of thin film composite nanofiltration membranes, J. Membr. Sci., 442, 107, 10.1016/j.memsci.2013.04.029
Vatanpour, 2014, Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes, J. Membr. Sci., 466, 70, 10.1016/j.memsci.2014.04.031
Vatanpour, 2012, Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes, J. Membr. Sci., 401, 132, 10.1016/j.memsci.2012.01.040
Yin, 2012, Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification, J. Membr. Sci., 423, 238, 10.1016/j.memsci.2012.08.020
Zhang, 2014, Mineralization-inspired preparation of composite membranes with polyethyleneimine–nanoparticle hybrid active layer for solvent resistant nanofiltration, J. Membr. Sci., 470, 70, 10.1016/j.memsci.2014.07.019
Zhu, 2014, Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4-styrenesulfonate) via surface-initiated ATRP, J. Membr. Sci., 465, 91, 10.1016/j.memsci.2014.04.016
Linggawati, 2012, Effects of APTEOS content and electron beam irradiation on physical and separation properties of hybrid nylon-66 membranes, Mater. Chem. Phys., 133, 110, 10.1016/j.matchemphys.2011.12.071
Linggawati, 2009, Effect of electron beam irradiation on morphology and sieving characteristics of nylon-66 membranes, Eur. Polym. J., 45, 2797, 10.1016/j.eurpolymj.2009.07.009
Xu, 2014, Nanofiltration hollow fiber membranes with high charge density prepared by simultaneous electron beam radiation-induced graft polymerization for removal of Cr (VI), Desalination, 346, 122, 10.1016/j.desal.2014.05.017
Buonomenna, 2009, Polymeric membranes modified via plasma for nanofiltration of aqueous solution containing organic compounds, Microporous Mesoporous Mater., 120, 147, 10.1016/j.micromeso.2008.06.032
Kim, 2011, Plasma surface modification of nanofiltration (NF) thin-film composite (TFC) membranes to improve anti organic fouling, Appl. Surf. Sci., 257, 9863, 10.1016/j.apsusc.2011.06.059
Wang, 2012, Preparation and characterization of negatively charged hollow fiber nanofiltration membrane by plasma-induced graft polymerization, Desalination, 286, 138, 10.1016/j.desal.2011.11.014
Hu, 2014, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction, J. Membr. Sci., 469, 80, 10.1016/j.memsci.2014.06.036
Lajimi, 2011, Effect of LbL surface modification on characteristics and performances of cellulose acetate nanofiltration membranes, Desalination, 266, 78, 10.1016/j.desal.2010.08.005
Ng, 2014, Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers, Desalination, 351, 19, 10.1016/j.desal.2014.07.020
Saeki, 2013, Stabilization of layer-by-layer assembled nanofiltration membranes by crosslinking via amide bond formation and siloxane bond formation, J. Membr. Sci., 447, 128, 10.1016/j.memsci.2013.07.022
Hendrix, 2012, Optimization of solvent resistant nanofiltration membranes prepared by the in-situ diamine crosslinking method, J. Membr. Sci., 421, 15, 10.1016/j.memsci.2012.06.022
Miao, 2013, Amphoteric composite membranes for nanofiltration prepared from sulfated chitosan crosslinked with hexamethylene diisocyanate, Chem. Eng. J., 234, 132, 10.1016/j.cej.2013.08.085
Mustafa, 2014, Novel grafting method efficiently decreases irreversible fouling of ceramic nanofiltration membranes, J. Membr. Sci., 470, 369, 10.1016/j.memsci.2014.07.050
Zhang, 2014, A novel positively charged composite nanofiltration membrane prepared by bio-inspired adhesion of polydopamine and surface grafting of poly (ethylene imine), J. Membr. Sci., 470, 9, 10.1016/j.memsci.2014.07.006
Zhu, 2015, Poly (amidoamine) dendrimer (PAMAM) grafted on thin film composite (TFC) nanofiltration (NF) hollow fiber membranes for heavy metal removal, J. Membr. Sci., 487, 117, 10.1016/j.memsci.2015.03.033
Gao, 2014, Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal, Water Res., 63, 252, 10.1016/j.watres.2014.06.006
Bernstein, 2013, Tuning the nanofiltration performance of thin film strong polyelectrolyte hydrogel composite membranes by photo-grafting conditions, J. Membr. Sci., 427, 129, 10.1016/j.memsci.2012.09.034
Deng, 2011, High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes, J. Membr. Sci., 366, 363, 10.1016/j.memsci.2010.10.029
Qiu, 2007, Surface modification of cardo polyetherketone ultrafiltration membrane by photo-grafted copolymers to obtain nanofiltration membranes, J. Membr. Sci., 295, 88, 10.1016/j.memsci.2007.02.040
Zhong, 2012, Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater, J. Membr. Sci., 417, 52, 10.1016/j.memsci.2012.06.013
Chisca, 2015, Crosslinked copolyazoles with a zwitterionic structure for organic solvent resistant membranes, Polym. Chem., 6, 543, 10.1039/C4PY01293C
Maab, 2013, Porous polyoxadiazole membranes for harsh environment, J. Membr. Sci., 445, 127, 10.1016/j.memsci.2013.05.038
Duong, 2015, Hydroxyl functionalized polytriazole-co-polyoxadiazole as substrates for forward osmosis membranes, ACS Appl. Mater. Interfaces, 7, 3960, 10.1021/am508387d
Hermans, 2015, Recent developments in thin film (nano) composite membranes for solvent resistant nanofiltration, Curr. Opin. Chem. Eng., 8, 45, 10.1016/j.coche.2015.01.009
Marchetti, 2014, Molecular separation with organic solvent nanofiltration: a critical review, Chem. Rev., 114, 10735, 10.1021/cr500006j
Fritzmann, 2007, State-of-the-art of reverse osmosis desalination, Desalination, 216, 1, 10.1016/j.desal.2006.12.009
Kiand, 2004, Supply of desalinated water by the private sector: 30MGD Singapore seawater desalination plant
Wilf, 2007
Loeb, 1961
2009, Europe's largest SWRO plant opens
Laine, 2009
Shimokawa, 2009, Desalination plant with unique methods in Fukuoka
Stover, 2008, Low energy consumption SWRO
Antony, 2010, Assessing the oxidative degradation of polyamide reverse osmosis membrane—accelerated ageing with hypochlorite exposure, J. Membr. Sci., 347, 159, 10.1016/j.memsci.2009.10.018
Kang, 2007, Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane, J. Membr. Sci., 300, 165, 10.1016/j.memsci.2007.05.025
Kawaguchi, 1984, Chlorine‐resistant membrane for reverse osmosis. I. Correlation between chemical structures and chlorine resistance of polyamides, J. Appl. Polym. Sci., 29, 3359, 10.1002/app.1984.070291113
Soice, 2004, Studies of oxidative degradation in polyamide RO membrane barrier layers using pendant drop mechanical analysis, J. Membr. Sci., 243, 345, 10.1016/j.memsci.2004.06.039
Cengeloglu, 2008, Removal of boron from water by using reverse osmosis, Sep. Purif. Technol., 64, 141, 10.1016/j.seppur.2008.09.006
Dominguez-Tagle, 2011, Boron removal efficiency in small seawater Reverse Osmosis systems, Desalination, 265, 43, 10.1016/j.desal.2010.07.028
Glueckstern, 2003, Optimization of boron removal in old and new SWRO systems, Desalination, 156, 219, 10.1016/S0011-9164(03)00344-8
Hilal, 2011, Boron removal from saline water: a comprehensive review, Desalination, 273, 23, 10.1016/j.desal.2010.05.012
Nadav, 2005, Boron removal from the permeate of a large SWRO plant in Eilat, Desalination, 185, 121, 10.1016/j.desal.2005.03.075
Pastor, 2001, Influence of pH in the elimination of boron by means of reverse osmosis, Desalination, 140, 145, 10.1016/S0011-9164(01)00364-2
Tu, 2010, Boron removal by reverse osmosis membranes in seawater desalination applications, Sep. Purif. Technol., 75, 87, 10.1016/j.seppur.2010.07.021
Greenlee, 2009, Reverse osmosis desalination: water sources, technology, and today's challenges, Water Res., 43, 2317, 10.1016/j.watres.2009.03.010
Sauvet-Goichon, 2007, Ashkelon desalination plant—a successful challenge, Desalination, 203, 75, 10.1016/j.desal.2006.03.525
Fathizadeh, 2011, Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process, J. Membr. Sci., 375, 88, 10.1016/j.memsci.2011.03.017
Jadav, 2009, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Membr. Sci., 328, 257, 10.1016/j.memsci.2008.12.014
Jeong, 2007, Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes, J. Membr. Sci., 294, 1, 10.1016/j.memsci.2007.02.025
T.V. Ratto, J.K. Holt, A.W. Szmodis, Membranes with embedded nanotubes for selective permeability, Google Patents, 2011.
Yang, 2009, Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination, Water Res., 43, 3777, 10.1016/j.watres.2009.06.002
González-Pérez, 2009, Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins, Langmuir, 25, 10447, 10.1021/la902417m
Kumar, 2007, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z, Proc. Natl. Acad. Sci., 104, 20719, 10.1073/pnas.0708762104
Taubert, 2007, Controlling water transport through artificial polymer/protein hybrid membranes, Proc. Natl. Acad. Sci., 104, 20643, 10.1073/pnas.0710864105
McCutcheon, 2008, Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes, J. Membr. Sci., 318, 458, 10.1016/j.memsci.2008.03.021
Arena, 2011, Surface modification of thin film composite membrane support layers with polydopamine: enabling use of reverse osmosis membranes in pressure retarded osmosis, J. Membr. Sci., 375, 55, 10.1016/j.memsci.2011.01.060
Lee, 2008, Substrate‐independent layer‐by‐layer assembly by using mussel‐adhesive‐inspired polymers, Adv. Mater., 20, 1619, 10.1002/adma.200702378
McCloskey, 2010, Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes, Polymer, 51, 3472, 10.1016/j.polymer.2010.05.008
Rana, 2010, Surface modifications for antifouling membranes, Chem. Rev., 110, 2448, 10.1021/cr800208y
Han, 2015, Water reclamation from emulsified oily wastewater via effective forward osmosis hollow fiber membranes under the PRO mode, Water Res., 81, 54, 10.1016/j.watres.2015.05.048
Yip, 2010, High performance thin-film composite forward osmosis membrane, Environ. Sci. Technol., 44, 3812, 10.1021/es1002555
Mi, 2010, Gypsum scaling and cleaning in forward osmosis: measurements and mechanisms, Environ. Sci. Technol., 44, 2022, 10.1021/es903623r
Dova, 2007, On the direct osmotic concentration of liquid foods: Part II. Development of a generalized model, J. Food Eng., 78, 431, 10.1016/j.jfoodeng.2005.10.011
Cornelissen, 2008, Membrane fouling and process performance of forward osmosis membranes on activated sludge, J. Membr. Sci., 319, 158, 10.1016/j.memsci.2008.03.048
McCutcheon, 2006, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci., 284, 237, 10.1016/j.memsci.2006.07.049
Loeb, 1997, Effect of porous support fabric on osmosis through a Loeb–Sourirajan type asymmetric membrane, J. Membr. Sci., 129, 243, 10.1016/S0376-7388(96)00354-7
Chung, 2012, Forward osmosis processes: yesterday, today and tomorrow, Desalination, 287, 78, 10.1016/j.desal.2010.12.019
Tiraferri, 2011, Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure, J. Membr. Sci., 367, 340, 10.1016/j.memsci.2010.11.014
Li, 2012, Thin-film composite membranes and formation mechanism of thin-film layers on hydrophilic cellulose acetate propionate substrates for forward osmosis processes, Ind. Eng. Chem. Res., 51, 10039, 10.1021/ie2027052
Widjojo, 2011, The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes, J. Membr. Sci., 383, 214, 10.1016/j.memsci.2011.08.041
Hoover, 2013, Nanofibers in thin-film composite membrane support layers: enabling expanded application of forward and pressure retarded osmosis, Desalination, 308, 73, 10.1016/j.desal.2012.07.019
Song, 2011, Nano gives the answer: breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate, Adv. Mater., 23, 3256, 10.1002/adma.201100510
Achilli, 2010, Selection of inorganic-based draw solutions for forward osmosis applications, J. Membr. Sci., 364, 233, 10.1016/j.memsci.2010.08.010
B.S. Frank, Desalination of sea water, Google Patents, 1972.
G.W. Batchelder, Process for the demineralization of water, Google Patents, 1965.
Gray, 2006, Internal concentration polarization in forward osmosis: role of membrane orientation, Desalination, 197, 1, 10.1016/j.desal.2006.02.003
Hancock, 2009, Solute coupled diffusion in osmotically driven membrane processes, Environ. Sci. Technol., 43, 6769, 10.1021/es901132x
McCutcheon, 2006, Desalination by ammonia–carbon dioxide forward osmosis: influence of draw and feed solution concentrations on process performance, J. Membr. Sci., 278, 114, 10.1016/j.memsci.2005.10.048
Ng, 2006, Performance of forward (direct) osmosis process: membrane structure and transport phenomenon, Environ. Sci. Technol., 40, 2408, 10.1021/es0519177
Kessler, 1976, Drinking water from sea water by forward osmosis, Desalination, 18, 297, 10.1016/S0011-9164(00)84119-3
K. Stache, Apparatus for transforming sea water, brackish water, polluted water or the like into a nutritious drink by means of osmosis, Google Patents, 1989.
J. Yaeli, Method and apparatus for processing liquid solutions of suspensions particularly useful in the desalination of saline water, Google Patents, 1992.
Adham, 2007
R.A. Jones, A.J. Ryan, H. Storey, M. Butler, C.J. Crook, Apparatus and method for purifying water by forward osmosis, Google Patents, 2007.
T. Oriard, P. Haggerty, Forward osmosis utilizing a controllable osmotic agent, Google Patents, 2007.
Yen, 2010, Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis, J. Membr. Sci., 364, 242, 10.1016/j.memsci.2010.08.021
Ge, 2015, Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment, Chem. Commun., 51, 4854, 10.1039/C5CC00168D
Chung, 2015, What is next for forward osmosis (FO) and pressure retarded osmosis (PRO), Sep. Purif. Technol., 156, 856, 10.1016/j.seppur.2015.10.063
McGovern, 2014, On the potential of forward osmosis to energetically outperform reverse osmosis desalination, J. Membr. Sci., 469, 245, 10.1016/j.memsci.2014.05.061
Shaffer, 2015, Forward osmosis: where are we now?, Desalination, 356, 271, 10.1016/j.desal.2014.10.031
Khayet, 2008, Membrane distillation
Laganà, 2000, Direct contact membrane distillation: modelling and concentration experiments, J. Membr. Sci., 166, 1, 10.1016/S0376-7388(99)00234-3
Khayet, 2005, Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation, J. Membr. Sci., 252, 101, 10.1016/j.memsci.2004.11.022
Banat, 1994, Theoretical and experimental study in membrane distillation, Desalination, 95, 39, 10.1016/0011-9164(94)00005-0
Banat, 1998, Desalination by Membrane Distillation: A Parametric Study, 33, 201
El-Bourawi, 2006, A framework for better understanding membrane distillation separation process, J. Membr. Sci., 285, 4, 10.1016/j.memsci.2006.08.002
Fernández-Pineda, 2002, Gas permeation and direct contact membrane distillation experiments and their analysis using different models, J. Membr. Sci., 198, 33, 10.1016/S0376-7388(01)00605-6
Phattaranawik, 2003, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci., 212, 177, 10.1016/S0376-7388(02)00498-2
Pangarkar, 2014, Status of membrane distillation for water and wastewater treatment—a review, Desalin. Water Treat., 52, 5199, 10.1080/19443994.2013.808422
Feng, 2004, Preliminary research on microporous membrane from F2. 4 for membrane distillation, Sep. Purif. Technol., 39, 221, 10.1016/j.seppur.2003.12.006
Khayet, 2010, Experimental design and optimization of asymmetric flat-sheet membranes prepared for direct contact membrane distillation, J. Membr. Sci., 351, 234, 10.1016/j.memsci.2010.01.057
Bonyadi, 2009, Highly porous and macrovoid-free PVDF hollow fiber membranes for membrane distillation by a solvent-dope solution co-extrusion approach, J. Membr. Sci., 331, 66, 10.1016/j.memsci.2009.01.014
García-Payo, 2010, Effects of PVDF-HFP concentration on membrane distillation performance and structural morphology of hollow fiber membranes, J. Membr. Sci., 347, 209, 10.1016/j.memsci.2009.10.026
García-Payo, 2009, Preparation and characterization of PVDF–HFP copolymer hollow fiber membranes for membrane distillation, Desalination, 245, 469, 10.1016/j.desal.2009.02.010
Suk, 2006, Synthesis of a new type of surface modifying macromolecules (nSMM) and characterization and testing of nSMM blended membranes for membrane distillation, J. Membr. Sci., 277, 177, 10.1016/j.memsci.2005.10.027
Song, 2007, Direct contact membrane distillation-based desalination: novel membranes, devices, larger-scale studies, and a model, Ind. Eng. Chem. Res., 46, 2307, 10.1021/ie0609968
Jin, 2008, Hydrophobic modification of poly (phthalazinone ether sulfone ketone) hollow fiber membrane for vacuum membrane distillation, J. Membr. Sci., 310, 20, 10.1016/j.memsci.2007.10.021
Hendren, 2009, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J. Membr. Sci., 331, 1, 10.1016/j.memsci.2008.11.038
Qtaishat, 2009, Guidelines for preparation of higher flux hydrophobic/hydrophilic composite membranes for membrane distillation, J. Membr. Sci., 329, 193, 10.1016/j.memsci.2008.12.041
Qtaishat, 2009, Novel porous composite hydrophobic/hydrophilic polysulfone membranes for desalination by direct contact membrane distillation, J. Membr. Sci., 341, 139, 10.1016/j.memsci.2009.05.053
Peng, 2005, Desalination by membrane distillation adopting a hydrophilic membrane, Desalination, 173, 45, 10.1016/j.desal.2004.06.208
Ohta, 1991, Membrane distillation with fluoro-carbon membranes, Desalination, 81, 107, 10.1016/0011-9164(91)85049-Z
Qtaishat, 2009, Effect of surface modifying macromolecules stoichiometric ratio on composite hydrophobic/hydrophilic membranes characteristics and performance in direct contact membrane distillation, AIChE J., 55, 3145, 10.1002/aic.11957
Bonyadi, 2007, Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes, J. Membr. Sci., 306, 134, 10.1016/j.memsci.2007.08.034
Feng, 2008, Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane, J. Membr. Sci., 311, 1, 10.1016/j.memsci.2007.12.026
Tofighy, 2011, Salty water desalination using carbon nanotubes membrane, Chem. Eng. J., 168, 1064, 10.1016/j.cej.2011.01.086
Dumée, 2010, Carbon nanotube based composite membranes for water desalination by membrane distillation, Desalin. Water Treat., 17, 72, 10.5004/dwt.2010.1701
Gethard, 2010, Water desalination using carbon-nanotube-enhanced membrane distillation, ACS Appl. Mater. Interfaces, 3, 110, 10.1021/am100981s
Dumée, 2010, Characterization and evaluation of carbon nanotube Bucky-paper membranes for direct contact membrane distillation, J. Membr. Sci., 351, 36, 10.1016/j.memsci.2010.01.025
Su, 2010, Effect of inner-layer thermal conductivity on flux enhancement of dual-layer hollow fiber membranes in direct contact membrane distillation, J. Membr. Sci., 364, 278, 10.1016/j.memsci.2010.08.028
Wang, 2009, Mixed matrix PVDF hollow fiber membranes with nanoscale pores for desalination through direct contact membrane distillation, Ind. Eng. Chem. Res., 48, 4474, 10.1021/ie8009704
Maab, 2013, Polyazole hollow fiber membranes for direct contact membrane distillation, ACS Ind. Eng. Chem. Res., 52, 10425, 10.1021/ie400043q
Maab, 2012, Synthesis and fabrication of nanostructured hydrophobic polyazole membranes for low-energy water recovery, J. Membr. Sci., 423, 11, 10.1016/j.memsci.2012.07.009
Tijing, 2015, Fouling and its control in membrane distillation—a review, J. Membr. Sci., 475, 215, 10.1016/j.memsci.2014.09.042
Naidu, 2015, A review on fouling of membrane distillation, Desalin. Water Treat., 1
Louie, 2006, Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes, J. Membr. Sci., 280, 762, 10.1016/j.memsci.2006.02.041
Tijing, 2009, Use of an oscillating electric field to mitigate mineral fouling in a heat exchanger, Exp. Heat Transfer, 22, 257, 10.1080/08916150903098936
Gryta, 2009, Calcium sulphate scaling in membrane distillation process, Chem. Pap., 63, 146, 10.2478/s11696-008-0095-y
Gryta, 2012, Polyphosphates used for membrane scaling inhibition during water desalination by membrane distillation, Desalination, 285, 170, 10.1016/j.desal.2011.09.051
Gryta, 2011, The influence of magnetic water treatment on CaCO3 scale formation in membrane distillation process, Sep. Purif. Technol., 80, 293, 10.1016/j.seppur.2011.05.008
Tijing, 2010, Physical water treatment using RF electric fields for the mitigation of CaCO3 fouling in cooling water, Int. J. Heat Mass Transf., 53, 1426, 10.1016/j.ijheatmasstransfer.2009.12.009
Tijing, 2011, Mitigation of scaling in heat exchangers by physical water treatment using zinc and tourmaline, Appl. Therm. Eng., 31, 2025, 10.1016/j.applthermaleng.2011.03.011
Tijing, 2008, Heat-treated titanium balls for the mitigation of mineral fouling in heat exchangers, Exp. Heat Transfer, 21, 115, 10.1080/08916150701815796
Ge, 2014, Membrane fouling and wetting in a DCMD process for RO brine concentration, Desalination, 344, 97, 10.1016/j.desal.2014.03.017
Yu, 2013, Experimental evaluation on concentrating cooling tower blowdown water by direct contact membrane distillation, Desalination, 323, 134, 10.1016/j.desal.2013.01.029
Nghiem, 2011, A scaling mitigation approach during direct contact membrane distillation, Sep. Purif. Technol., 80, 315, 10.1016/j.seppur.2011.05.013
He, 2009, Studies on scaling of membranes in desalination by direct contact membrane distillation: CaCO3 and mixed CaCO3/CaSO4 systems, Chem. Eng. Sci., 64, 1844, 10.1016/j.ces.2008.12.036
He, 2009, Effects of antiscalants to mitigate membrane scaling by direct contact membrane distillation, J. Membr. Sci., 345, 53, 10.1016/j.memsci.2009.08.021
Guillen-Burrieza, 2014, Membrane fouling and cleaning in long term plant-scale membrane distillation operations, J. Membr. Sci., 468, 360, 10.1016/j.memsci.2014.05.064
2015
Ramon, 2011, Membrane-based production of salinity-gradient power, Energy Environ. Sci., 4, 4423, 10.1039/c1ee01913a
Pattle, 1954, Production of electric power by mixing fresh and salt water in the hydroelectric pile, Nature, 174, 660, 10.1038/174660a0
Logan, 2012, Membrane-based processes for sustainable power generation using water, Nature, 488, 313, 10.1038/nature11477
Loeb, 1976, Production of energy from concentrated brines by pressure-retarded osmosis: II. Experimental results and projected energy costs, J. Membr. Sci., 1, 249, 10.1016/S0376-7388(00)82271-1
Loeb, 1976, Production of energy from concentrated brines by pressure-retarded osmosis: I. Preliminary technical and economic correlations, J. Membr. Sci., 1, 49, 10.1016/S0376-7388(00)82257-7
Yip, 2011, Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients, Environ. Sci. Technol., 45, 4360, 10.1021/es104325z
Thorsen, 2009, The potential for power production from salinity gradients by pressure retarded osmosis, J. Membr. Sci., 335, 103, 10.1016/j.memsci.2009.03.003
Mitigation, 2011
Post, 2007, Salinity-gradient power: evaluation of pressure-retarded osmosis and reverse electrodialysis, J. Membr. Sci., 288, 218, 10.1016/j.memsci.2006.11.018
Loeb, 1976, The osmotic power plant, 51
Skilhagen, 2008, Osmotic power–power production based on the osmotic pressure difference between waters with varying salt gradients, Desalination, 220, 476, 10.1016/j.desal.2007.02.045
Gerstandt, 2008, Membrane processes in energy supply for an osmotic power plant, Desalination, 224, 64, 10.1016/j.desal.2007.02.080
Loeb, 1990, Comparative mechanical efficiency of several plant configurations using a pressure-retarded osmosis energy converter, J. Membr. Sci., 51, 323, 10.1016/S0376-7388(00)80354-3
Lee, 1981, Membranes for power generation by pressure-retarded osmosis, J. Membr. Sci., 8, 141, 10.1016/S0376-7388(00)82088-8
Jellinek, 1981, Osmo-power. Theory and performance of an osmo-power pilot plant, Ocean Eng., 8, 103, 10.1016/0029-8018(81)90022-6
Mehta, 1979, Performance of permasep B-9 and B-10 membranes in various osmotic regions and at high osmotic pressures, J. Membr. Sci., 4, 335, 10.1016/S0376-7388(00)83312-8
Mehta, 1979, Internal polarization in the porous substructure of a semipermeable membrane under pressure-retarded osmosis, J. Membr. Sci., 4, 261, 10.1016/S0376-7388(00)83301-3
Loeb, 1979, A two-coefficient water transport equation for pressure-retarded osmosis, J. Membr. Sci., 4, 351, 10.1016/S0376-7388(00)83313-X
McGinnis, 2007, A novel ammonia–carbon dioxide osmotic heat engine for power generation, J. Membr. Sci., 305, 13, 10.1016/j.memsci.2007.08.027
Xu, 2010, Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module, J. Membr. Sci., 348, 298, 10.1016/j.memsci.2009.11.013
Achilli, 2009, Power generation with pressure retarded osmosis: an experimental and theoretical investigation, J. Membr. Sci., 343, 42, 10.1016/j.memsci.2009.07.006
Han, 2015, Progress in pressure retarded osmosis (PRO) membranes for osmotic power generation, Prog. Polym. Sci., 51, 1, 10.1016/j.progpolymsci.2015.04.005
2004
Loeb, 2002, Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules, Desalination, 143, 115, 10.1016/S0011-9164(02)00233-3
Zhu, 2009, On RO membrane and energy costs and associated incentives for future enhancements of membrane permeability, J. Membr. Sci., 344, 1, 10.1016/j.memsci.2009.08.006
Helfer, 2014, Osmotic power with pressure retarded osmosis: theory, performance and trends—a review, J. Membr. Sci., 453, 337, 10.1016/j.memsci.2013.10.053
International Renewable Energy Agency, 2012
Hinkley, 2011
Kleiterp, 2012
Skilhagen, 2012, Osmotic power: a new, renewable source of energy
Syed, 2010, Australian Energy Projections to 2029–30
Tanioka, 2012, Power generation by pressure retarded osmosis using concentrated brine from seawater desalination system and treated sewage: review of experience with pilot plant in Japan
Bræin, 2010, Osmotic power: from prototype to industry—what will it take?
Skilhagen, 2006, Power production based on the osmotic pressure difference between fresh water and seawater
Daniilidis, 2014, Upscale potential and financial feasibility of a reverse electrodialysis power plant, Appl. Energy, 119, 257, 10.1016/j.apenergy.2013.12.066
Hong, 2015, Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review, J. Membr. Sci., 486, 71, 10.1016/j.memsci.2015.02.039
Brandon, 2003, Recent advances in materials for fuel cells, Annu. Rev. Mater. Res., 33, 183, 10.1146/annurev.matsci.33.022802.094122
Nagarale, 2006, Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interf. Sci., 119, 97, 10.1016/j.cis.2005.09.005
Guler, 2012, Tailor‐made anion‐exchange membranes for salinity gradient power generation using reverse electrodialysis, ChemSusChem, 5, 2262, 10.1002/cssc.201200298
Klaysom, 2011, Preparation of porous ion-exchange membranes (IEMs) and their characterizations, J. Membr. Sci., 371, 37, 10.1016/j.memsci.2011.01.008
Geise, 2013, Ionic resistance and permselectivity tradeoffs in anion exchange membranes, ACS Appl. Mater. Interfaces, 5, 10294, 10.1021/am403207w
Długołęcki, 2008, Current status of ion exchange membranes for power generation from salinity gradients, J. Membr. Sci., 319, 214, 10.1016/j.memsci.2008.03.037
Yun, 2011, Crosslinked sulfonated poly (vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite membranes for direct methanol fuel cells, J. Membr. Sci., 380, 208, 10.1016/j.memsci.2011.07.010
Yang, 2010, Quaternized poly (vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells, J. Power Sources, 195, 2212, 10.1016/j.jpowsour.2009.10.091
Wu, 2012, Cation exchange PVA/SPPO/SiO2 membranes with double organic phases for alkali recovery, J. Membr. Sci., 423, 383, 10.1016/j.memsci.2012.08.031
Tripathi, 2011, Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci., 36, 945, 10.1016/j.progpolymsci.2010.12.005
Zhang, 2013, Cross-linked poly (vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications, J. Power Sources, 240, 359, 10.1016/j.jpowsour.2013.03.162
Rhim, 2004, Crosslinked poly (vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes, J. Membr. Sci., 238, 143, 10.1016/j.memsci.2004.03.030
Liu, 2014, Novel proton exchange membrane based on crosslinked poly (vinyl alcohol) for direct methanol fuel cells, J. Power Sources, 249, 285, 10.1016/j.jpowsour.2013.10.117
Aouadj, 1996, Preparation of hydrophilic membranes by grafting acrylic acid onto pre‐irradiated teflon‐FEP films, Angew. Makromol. Chem., 235, 73, 10.1002/apmc.1996.052350107
Xu, 2001, Ionic conductivity threshold in sulfonated poly (phenylene oxide) matrices: a combination of three-phase model and percolation theory, Chem. Eng. Sci., 56, 5343, 10.1016/S0009-2509(01)00242-1
Xu, 2008, Poly (2, 6-dimethyl-1, 4-phenylene oxide) (PPO)—a versatile starting polymer for proton conductive membranes (PCMs), Prog. Polym. Sci., 33, 894, 10.1016/j.progpolymsci.2008.07.002
Saito, 2002, Convection-aided collection of metal ions using chelating porous flat-sheet membranes, J. Chromatogr. A, 954, 277, 10.1016/S0021-9673(02)00163-2
Hosseini, 2012, Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron–nickel oxide nanoparticles, Desalination, 284, 191, 10.1016/j.desal.2011.08.057
Gizli, 2012, Characterization of poly (vinylchloride)(PVC) based cation exchange membranes prepared with ionic liquid, Sep. Purif. Technol., 97, 96, 10.1016/j.seppur.2012.02.028
Hu, 2011, Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell, J. Power Sources, 196, 4483, 10.1016/j.jpowsour.2011.01.034
Arsalan, 2013, A comparative study of theoretical, electrochemical and ionic transport through PVC based Cu3(PO4)2 and polystyrene supported Ni3(PO4)2 composite ion exchange porous membranes, Desalination, 318, 97, 10.1016/j.desal.2013.03.014
Hosseini, 2012, Fabrication of (polyvinyl chloride/cellulose acetate) electrodialysis heterogeneous cation exchange membrane: characterization and performance in desalination process, Desalination, 306, 51, 10.1016/j.desal.2012.07.028
Güler, 2014, Monovalent-ion-selective membranes for reverse electrodialysis, J. Membr. Sci., 455, 254, 10.1016/j.memsci.2013.12.054
Kempener, 2014
Vermaas, 2011, Doubled power density from salinity gradients at reduced intermembrane distance, Environ. Sci. Technol., 45, 7089, 10.1021/es2012758
2014
Ferreira, 2013, Characterisation of electrical energy storage technologies, Energy, 53, 288, 10.1016/j.energy.2013.02.037
Balaban, 2000
Lee, 2014, A review of recent developments in membrane separators for rechargeable lithium–ion batteries, Energy Environ. Sci., 7, 3857, 10.1039/C4EE01432D
Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644
Pillot, 2014
Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a
Deimede, 2015, Separators for lithium‐ion batteries: a review on the production processes and recent developments, Energy Technol., 3, 453, 10.1002/ente.201402215
Zhang, 2007, A review on the separators of liquid electrolyte Li–ion batteries, J. Power Sources, 164, 351, 10.1016/j.jpowsour.2006.10.065
Arora, 2004, Battery separators, Chem. Rev., 104, 4419, 10.1021/cr020738u
Huang, 2011, Separator technologies for lithium–ion batteries, J. Solid State Electrochem., 15, 649, 10.1007/s10008-010-1264-9
Bierenbaum, 1974, Microporous polymeric films, Ind. Eng. Chem. Prod. Res. Dev., 13, 2, 10.1021/i360049a002
Chandavasu, 2000, Preparation of microporous films from immiscible blends via melt processing, J. Plast. Film Sheeting, 16, 288, 10.1177/875608700772677508
H. Sogo, Separator for a battery using an organic electrolytic solution and method for preparing the same, Google Patents, 1997.
H. Higuchi, K. Matsushita, M. Ezoe, T. Shinomura, Porous film, process for producing the same, and use of the same, Google Patents, 1995.
P. Jacoby, W.T. Tapp, Oriented polymeric microporous films, Google Patents, 1993.
Djian, 2007, Lithium–ion batteries with high charge rate capacity: Influence of the porous separator, J. Power Sources, 172, 416, 10.1016/j.jpowsour.2007.07.018
Love, 2011, Thermomechanical analysis and durability of commercial micro-porous polymer Li–ion battery separators, J. Power Sources, 196, 2905, 10.1016/j.jpowsour.2010.10.083
Wu, 2004, Correlation between electrochemical characteristics and thermal stability of advanced lithium–ion batteries in abuse tests—short-circuit tests, Electrochim. Acta, 49, 1803, 10.1016/j.electacta.2003.12.012
Venugopal, 1999, Characterization of microporous separators for lithium–ion batteries, J. Power Sources, 77, 34, 10.1016/S0378-7753(98)00168-2
Morehouse, 2006, The effect of uni-axial orientation on macroporous membrane structure, J. Porous. Mater., 13, 61, 10.1007/s10934-006-5491-5
Jiang, 1997, Studies of some poly (vinylidene fluoride) electrolytes, Electrochim. Acta, 42, 2667, 10.1016/S0013-4686(97)00005-4
Ji, 2007, PVDF porous matrix with controlled microstructure prepared by TIPS process as polymer electrolyte for lithium ion battery, Polymer, 48, 6415, 10.1016/j.polymer.2007.08.049
Djian, 2009, Macroporous poly (vinylidene fluoride) membrane as a separator for lithium–ion batteries with high charge rate capacity, J. Power Sources, 187, 575, 10.1016/j.jpowsour.2008.11.027
Magistris, 2001, Structure, porosity and conductivity of PVdF films for polymer electrolytes, J. Power Sources, 97, 657, 10.1016/S0378-7753(01)00644-9
Saunier, 2003, Thin and flexible lithium–ion batteries: investigation of polymer electrolytes, J. Power Sources, 119, 454, 10.1016/S0378-7753(03)00197-6
Boudin, 1999, Microporous PVdF gel for lithium–ion batteries, J. Power Sources, 81, 804, 10.1016/S0378-7753(99)00154-8
Bottino, 1991, The formation of microporous polyvinylidene difluoride membranes by phase separation, J. Membr. Sci., 57, 1, 10.1016/S0376-7388(00)81159-X
Appetecchi, 1997, High-performance electrolyte membranes for plastic lithium batteries, J. Power Sources, 66, 77, 10.1016/S0378-7753(96)02484-6
Groce, 1994, Synthesis and characterization of highly conducting gel electrolytes, Electrochim. Acta, 39, 2187, 10.1016/0013-4686(94)E0167-X
Jung, 2004, Preparation of hydrophilic polyacrylonitrile blend membranes for ultrafiltration, J. Membr. Sci., 229, 129, 10.1016/j.memsci.2003.10.020
Jung, 2005, Effect of crystallization and annealing on polyacrylonitrile membranes for ultrafiltration, J. Membr. Sci., 246, 67, 10.1016/j.memsci.2004.08.012
Min, 2003, Preparation and characterization of porous polyacrylonitrile membranes for lithium–ion polymer batteries, J. Power Sources, 119, 469, 10.1016/S0378-7753(03)00206-4
Lee, 1996, Effect of phase separation on ionic conductivity of poly (methyl methacrylate)-based solid polymer electrolyte, Solid State Ionics, 85, 91, 10.1016/0167-2738(96)00046-X
Bohnke, 1993, Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration, Solid State Ionics, 66, 97, 10.1016/0167-2738(93)90032-X
Appetecchi, 1995, Kinetics and stability of the lithium electrode in poly (methylmethacrylate)-based gel electrolytes, Electrochim. Acta, 40, 991, 10.1016/0013-4686(94)00345-2
Gopalan, 2008, Development of electrospun PVDF–PAN membrane-based polymer electrolytes for lithium batteries, J. Membr. Sci., 325, 683, 10.1016/j.memsci.2008.08.047
Stephan, 2006, Review on composite polymer electrolytes for lithium batteries, Polymer, 47, 5952, 10.1016/j.polymer.2006.05.069
Yang, 2012, Membranes in lithium ion batteries, Membranes, 2, 367, 10.3390/membranes2030367
Magistris, 2002, PVDF-based porous polymer electrolytes for lithium batteries, Solid State Ionics, 152, 347, 10.1016/S0167-2738(02)00335-1
Zhou, 2008, Preparation and performances of porous polyacrylonitrile–methyl methacrylate membrane for lithium–ion batteries, J. Power Sources, 184, 477, 10.1016/j.jpowsour.2008.05.027
Liao, 2009, Self-supported poly (methyl methacrylate–acrylonitrile–vinyl acetate)-based gel electrolyte for lithium ion battery, J. Power Sources, 189, 139, 10.1016/j.jpowsour.2008.10.027
Wu, 2007, Novel porous polymer electrolyte based on polyacrylonitrile, Mater. Chem. Phys., 104, 284, 10.1016/j.matchemphys.2007.03.013
Zhang, 2004, Microporous gel electrolyte Li–ion battery, J. Power Sources, 125, 114, 10.1016/j.jpowsour.2003.07.008
Shi, 2002, Structure and performance of porous polymer electrolytes based on P(VDF-HFP) for lithium ion batteries, J. Power Sources, 103, 286, 10.1016/S0378-7753(01)00868-0
Costa, 2013, Evaluation of the main processing parameters influencing the performance of poly (vinylidene fluoride–trifluoroethylene) lithium–ion battery separators, J. Solid State Electrochem., 17, 861, 10.1007/s10008-012-1928-8
Li, 2014, Preparation and properties of poly (vinylidene fluoride)/poly (dimethylsiloxane) graft (poly (propylene oxide)-block-poly (ethylene oxide)) blend porous separators and corresponding electrolytes, Electrochim. Acta, 116, 413, 10.1016/j.electacta.2013.11.076
Li, 2014, Preparation and characterization of safety PVDF/P (MMA-co-PEGMA) active separators by studying the liquid electrolyte distribution in this kind of membrane, Electrochim. Acta, 115, 317, 10.1016/j.electacta.2013.10.183
Costa, 2014, Poly (vinylidene fluoride)-based, co-polymer separator electrolyte membranes for lithium–ion battery systems, J. Power Sources, 245, 779, 10.1016/j.jpowsour.2013.06.151
Choi, 2001, Preparation and electrochemcial characteristics of plasticized polymer electrolytes based upon a P(VDF-co-HFP)/PVAC blend, Electrochim. Acta, 46, 1581, 10.1016/S0013-4686(00)00756-8
Jeon, 2005, Solvent-free polymer electrolytes based on thermally annealed porous P (VdF–HFP)/P (EO–EC) membranes, J. Power Sources, 143, 219, 10.1016/j.jpowsour.2004.12.005
Wang, 2004, A novel polymer electrolyte based on PMAML/PVDF–HFP blend, Electrochim. Acta, 49, 1063, 10.1016/j.electacta.2003.10.017
Ren, 2009, A microporous gel electrolyte based on poly (vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium–ion battery, Electrochim. Acta, 54, 1888, 10.1016/j.electacta.2008.10.011
Tian, 2007, Preparation of a microporous polymer electrolyte based on poly (vinyl chloride)/poly (acrylonitrile–butyl acrylate) blend for Li–ion batteries, Electrochim. Acta, 52, 3199, 10.1016/j.electacta.2006.09.068
Rhoo, 1997, Ionic conduction in plasticized PVCPMMA blend polymer electrolytes, Electrochim. Acta, 42, 1571, 10.1016/S0013-4686(96)00318-0
Ma, 2013, Preparation of PVDF based blend microporous membranes for lithium ion batteries by thermally induced phase separation: I. Effect of PMMA on the membrane formation process and the properties, J. Membr. Sci., 444, 213, 10.1016/j.memsci.2013.05.028
Lin, 2006, Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions, Eur. Polym. J., 42, 2407, 10.1016/j.eurpolymj.2006.05.008
Nicotera, 2006, Investigation of ionic conduction and mechanical properties of PMMA–PVDF blend-based polymer electrolytes, Solid State Ionics, 177, 581, 10.1016/j.ssi.2005.12.028
Jung, 2004, Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes, J. Membr. Sci., 243, 45, 10.1016/j.memsci.2004.06.011
Subramania, 2006, Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVDF-co-HFP-PAN for Li–ion battery applications, J. Power Sources, 153, 177, 10.1016/j.jpowsour.2004.12.009
Li, 2011, Preparation and properties of poly (ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li–ion batteries, Electrochim. Acta, 56, 2641, 10.1016/j.electacta.2010.12.010
Sohn, 2008, Preparation of polymer-coated separators using an electron beam irradiation, Nucl. Instrum. Methods Phys. Res. Sect. B, 266, 4994, 10.1016/j.nimb.2008.09.002
Kim, 2005, Electrochemical properties of the Li–ion polymer batteries with P (VDF-co-HFP)-based gel polymer electrolyte, J. Power Sources, 141, 293, 10.1016/j.jpowsour.2004.08.007
Lee, 2005, Electrochemical effect of coating layer on the separator based on PVDF and PE non-woven matrix, J. Power Sources, 146, 431, 10.1016/j.jpowsour.2005.03.047
Jeong, 2004, Effect of thickness of coating layer on polymer-coated separator on cycling performance of lithium–ion polymer cells, J. Power Sources, 128, 256, 10.1016/j.jpowsour.2003.09.073
Lee, 2005, Novel porous separator based on PVDF and PE non-woven matrix for rechargeable lithium batteries, J. Power Sources, 139, 235, 10.1016/j.jpowsour.2004.06.055
R.W. Callahan, R.W. Call, K.J. Harleson, T.H. Yu, Battery separators with reduced splitting propensity, Google Patents, 2003.
J.T. Lundquist, C.B. Lundsager, N.I. Palmer, H.J. Troffkin, Battery separator, Google Patents, 1987.
Lee, 2009, Separator grafted with siloxane by electron beam irradiation for lithium secondary batteries, Electrochim. Acta, 54, 4312, 10.1016/j.electacta.2009.02.088
Lee, 2009, New separator prepared by electron beam irradiation for high voltage lithium secondary batteries, Nucl. Instrum. Methods Phys. Res. Sect. B, 267, 2390, 10.1016/j.nimb.2009.05.003
Gao, 2006, PE-g-MMA polymer electrolyte membrane for lithium polymer battery, Electrochim. Acta, 52, 443, 10.1016/j.electacta.2006.05.049
Kim, 2009, Plasma-modified polyethylene membrane as a separator for lithium–ion polymer battery, Electrochim. Acta, 54, 3714, 10.1016/j.electacta.2009.01.055
Sohn, 2012, PVDF-HFP/PMMA-coated PE separator for lithium ion battery, J. Solid State Electrochem., 16, 551, 10.1007/s10008-011-1379-7
Shi, 2013, Improved thermal and electrochemical performances of PMMA modified PE separator skeleton prepared via dopamine-initiated ATRP for lithium ion batteries, J. Membr. Sci., 437, 160, 10.1016/j.memsci.2013.03.006
Kang, 2012, Mussel-and diatom-inspired silica coating on separators yields improved power and safety in Li–ion batteries, Chem. Mater., 24, 3481, 10.1021/cm301967f
Fang, 2013, Facile introduction of polyether chains onto polypropylene separators and its application in lithium ion batteries, J. Membr. Sci., 448, 143, 10.1016/j.memsci.2013.07.065
Ryou, 2011, Mussel‐inspired polydopamine‐treated polyethylene separators for high‐power Li‐ion batteries, Adv. Mater., 23, 3066, 10.1002/adma.201100303
Ryou, 2012, Excellent cycle life of Lithium‐metal anodes in Lithium‐ion batteries with mussel‐inspired polydopamine‐coated separators, Adv. Energy Mater., 2, 645, 10.1002/aenm.201100687
Lee, 2013, Effect of polydopamine surface coating on polyethylene separators as a function of their porosity for high-power Li–ion batteries, Electrochim. Acta, 113, 433, 10.1016/j.electacta.2013.09.104
Zhang, 2014, Poly (vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium–ion batteries, J. Power Sources, 251, 423, 10.1016/j.jpowsour.2013.11.079
Raghavan, 2010, Electrochemical performance of electrospun poly (vinylidene fluoride-co-hexafluoropropylene)-based nanocomposite polymer electrolytes incorporating ceramic fillers and room temperature ionic liquid, Electrochim. Acta, 55, 1347, 10.1016/j.electacta.2009.05.025
Chen, 2011, High discharge capacity solid composite polymer electrolyte lithium battery, J. Power Sources, 196, 2802, 10.1016/j.jpowsour.2010.11.058
Jeong, 2010, Effect of phase inversion on microporous structure development of Al2O3/poly (vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium–ion batteries, J. Power Sources, 195, 6116, 10.1016/j.jpowsour.2009.10.085
Kim, 2012, Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li–ion battery, J. Power Sources, 212, 22, 10.1016/j.jpowsour.2012.03.038
Fang, 2011, Nanoparticle-coated separators for lithium–ion batteries with advanced electrochemical performance, Phys. Chem. Chem. Phys., 13, 14457, 10.1039/c1cp22017a
Jeong, 2011, Closely packed SiO2 nanoparticles/poly (vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium–ion batteries, J. Power Sources, 196, 6716, 10.1016/j.jpowsour.2010.11.037
Kim, 2010, Preparation of a trilayer separator and its application to lithium–ion batteries, J. Power Sources, 195, 8302, 10.1016/j.jpowsour.2010.07.016
Kim, 2010, Electrochemical performances of inorganic membrane coated electrodes for Li–ion batteries, J. Solid State Electrochem., 14, 769, 10.1007/s10008-009-0851-0
Prasanna, 2014, Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries, Mater. Chem. Phys., 146, 545, 10.1016/j.matchemphys.2014.04.014
Shin, 2013, High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium–ion batteries, J. Power Sources, 226, 54, 10.1016/j.jpowsour.2012.10.082
Fu, 2012, Nano SiO2 particle formation and deposition on polypropylene separators for lithium–ion batteries, J. Power Sources, 206, 325, 10.1016/j.jpowsour.2011.10.130
Jeong, 2010, Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly (vinylidene fluoride-hexafluoropropylene) composite separators for lithium–ion batteries, J. Membr. Sci., 364, 177, 10.1016/j.memsci.2010.08.012
Park, 2010, Close-packed SiO2/poly (methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium–ion batteries, J. Power Sources, 195, 8306, 10.1016/j.jpowsour.2010.06.112
Choi, 2010, Enhancement of thermal stability and cycling performance in lithium–ion cells through the use of ceramic-coated separators, J. Power Sources, 195, 6192, 10.1016/j.jpowsour.2009.11.020
Eo, 2009, Effect of an inorganic additive on the cycling performances of lithium–ion polymer cells assembled with polymer-coated separators, J. Power Sources, 189, 766, 10.1016/j.jpowsour.2008.08.008
Liao, 2011, Polypropylene-supported and nano-Al2O3 doped poly (ethylene oxide)–poly (vinylidene fluoride-hexafluoropropylene)-based gel electrolyte for lithium ion batteries, J. Power Sources, 196, 2115, 10.1016/j.jpowsour.2010.10.062
Gavelin, 2002, Amphiphilic solid polymer electrolytes, Solid State Ionics, 147, 325, 10.1016/S0167-2738(02)00020-6
Ji, 2011, Simultaneous improvement in ionic conductivity and mechanical properties of multi-functional block-copolymer modified solid polymer electrolytes for lithium ion batteries, J. Power Sources, 196, 10163, 10.1016/j.jpowsour.2011.08.041
Wang, 2012, Macromolecule plasticized interpenetrating structure solid state polymer electrolyte for lithium ion batteries, Electrochim. Acta, 68, 214, 10.1016/j.electacta.2012.02.067
Sukeshini, 1998, PEO based solid polymer electrolyte plasticized by dibutyl phthalate, Solid State Ionics, 113, 179, 10.1016/S0167-2738(98)00372-5
Cheng, 2014, Preparation and performance of polymer electrolyte based on poly (vinylidene fluoride)/polysulfone blend membrane via thermally induced phase separation process for lithium ion battery, J. Power Sources, 266, 401, 10.1016/j.jpowsour.2014.05.056
Li, 2011, Gel polymer electrolytes based on active PVDF separator for lithium ion battery. I: Preparation and property of PVDF/poly (dimethylsiloxane) blending membrane, J. Membr. Sci., 379, 397, 10.1016/j.memsci.2011.06.008
Zhao, 2009, Modification of electrospun poly (vinylidene fluoride‐co‐hexafluoropropylene) membranes through the introduction of poly (ethylene glycol) dimethacrylate, J. Appl. Polym. Sci., 111, 3104, 10.1002/app.29374
Flora, 2012, Evaluation of lithium ion conduction in PAN/PMMA-based polymer blend electrolytes for Li–ion battery applications, Ionics, 18, 731, 10.1007/s11581-012-0690-3
Rao, 2012, Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery, J. Membr. Sci., 399, 37, 10.1016/j.memsci.2012.01.021
Cao, 2013, Interfacial compatibility of gel polymer electrolyte and electrode on performance of Li–ion battery, Electrochim. Acta, 114, 527, 10.1016/j.electacta.2013.10.052
Croce, 2011, A safe, high-rate and high-energy polymer lithium–ion battery based on gelled membranes prepared by electrospinning, Energy Environ. Sci., 4, 921, 10.1039/c0ee00348d
Basumallick, 2006, Organic polymer gel electrolyte for Li–ion batteries, J. Power Sources, 162, 797, 10.1016/j.jpowsour.2005.07.026
Chakrabarti, 2010, Novel PEO-based dendronized polymers for lithium–ion batteries, Solid State Ionics, 181, 982, 10.1016/j.ssi.2010.05.016
Liu, 2012, Ion exchange membranes as electrolyte to improve high temperature capacity retention of LiMn2O4 cathode lithium–ion batteries, Chem. Commun., 48, 9858, 10.1039/c2cc34529c
Liu, 2012, Ion exchange membranes as electrolyte for high performance Li–ion batteries, Energy Environ. Sci., 5, 9007, 10.1039/c2ee22753c
Cai, 2012, High performance of lithium–ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes, Energy Environ. Sci., 5, 5690, 10.1039/C1EE02708E
Wang, 2011, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research, Appl. Energy, 88, 981, 10.1016/j.apenergy.2010.09.030
Lipman, 2003, Market concepts, competing technologies and cost challenges for automotive and stationary applications
Gittleman, 2010, Automotive fuel cell R&D needs
Jerram, 2008, Bus survey
Butler, 2009, Portable fuel cell survey 2009
Narayanan, 2010, Portable direct methanol fuel cell systems
Geiger, 2003, Fuel cell market survey: small stationary applications, 30, 1
Today, 2009
Agro, 2005, 790
Gautam, 2010, Proton exchange membrane (PEM) in fuel cells: a review, IUP J. Chem., 3, 51
Kraytsberg, 2014, Review of advanced materials for proton exchange membrane fuel cells, Energy Fuel, 28, 7303, 10.1021/ef501977k
Kinumoto, 2006, Durability of perfluorinated ionomer membrane against hydrogen peroxide, J. Power Sources, 158, 1222, 10.1016/j.jpowsour.2005.10.043
Zamel, 2011, Effect of contaminants on polymer electrolyte membrane fuel cells, Prog. Energy Combust. Sci., 37, 292, 10.1016/j.pecs.2010.06.003
Shi, 1997, Dehydration of protonated Nafion® coatings induced by cation exchange and monitored by quartz crystal microgravimetry, J. Electroanal. Chem., 425, 117, 10.1016/S0022-0728(96)04945-5
St-Pierre, 2000, Relationships between water management, contamination and lifetime degradation in PEFC, J. New Mater. Electrochem. Syst., 3, 99
Borup, 2007, Scientific aspects of polymer electrolyte fuel cell durability and degradation, Chem. Rev., 107, 3904, 10.1021/cr050182l
Rodgers, 2012, Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime, Chem. Rev., 112, 6075, 10.1021/cr200424d
Healy, 2005, Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells, Fuel Cells, 5, 302, 10.1002/fuce.200400050
Tang, 2006, An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane, Mater. Sci. Eng. A, 425, 297, 10.1016/j.msea.2006.03.055
Wu, 2008, A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies, J. Power Sources, 184, 104, 10.1016/j.jpowsour.2008.06.006
Tang, 2007, A degradation study of Nafion proton exchange membrane of PEM fuel cells, J. Power Sources, 170, 85, 10.1016/j.jpowsour.2007.03.061
Shi, 2013, Mechanical properties of Nafion 212 proton exchange membrane subjected to hygrothermal aging, J. Power Sources, 238, 318, 10.1016/j.jpowsour.2013.03.042
Kusoglu, 2006, Mechanical response of fuel cell membranes subjected to a hygro-thermal cycle, J. Power Sources, 161, 987, 10.1016/j.jpowsour.2006.05.020
Li, 2010, Synthesis and characterization of Nafion/cross-linked PVP semi-interpenetrating polymer network membrane for direct methanol fuel cell, J. Membr. Sci., 354, 189, 10.1016/j.memsci.2010.02.038
Ma, 2012, The research status of Nafion ternary composite membrane, Int. J. Hydrog. Energy, 37, 13185, 10.1016/j.ijhydene.2012.03.132
Alvarez-Gallego, 2008, Sulfonated polynaphthalimides with benzimidazole pendant groups, Polymer, 49, 3875, 10.1016/j.polymer.2008.06.048
Gomes, 2008, Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes, J. Power Sources, 175, 49, 10.1016/j.jpowsour.2007.09.090
Álvarez‐Gallego, 2007, Synthesis and properties of novel polyimides bearing sulfonated benzimidazole pendant groups, Macromol. Rapid Commun., 28, 616, 10.1002/marc.200600700
Roeder, 2007, Protonation of sulfonated poly (4, 4′‐diphenylether‐1, 3, 4‐oxadiazole) membranes, Macromol. Chem. Phys., 208, 467, 10.1002/macp.200600515
Vetter, 2004, Synthesis and characterization of new sulfonated poly (arylene ether 1, 3, 4-oxadiazole)s, React. Funct. Polym., 61, 171, 10.1016/j.reactfunctpolym.2004.05.002
Arico, 2001, DMFCs: from fundamental aspects to technology development, Fuel Cells, 1, 133, 10.1002/1615-6854(200107)1:2<133::AID-FUCE133>3.0.CO;2-5
Smitha, 2005, Solid polymer electrolyte membranes for fuel cell applications—a review, J. Membr. Sci., 259, 10, 10.1016/j.memsci.2005.01.035
Chandan, 2013, High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–a review, J. Power Sources, 231, 264, 10.1016/j.jpowsour.2012.11.126
Neburchilov, 2007, A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources, 169, 221, 10.1016/j.jpowsour.2007.03.044
Hamrock, 2006, Proton exchange membranes for fuel cell applications, J. Macromol. Sci. Polym. Rev., 46, 219, 10.1080/15583720600796474
Kalhammer, 1998
Carrette, 2001, Fuel cells–fundamentals and applications, Fuel Cells, 1, 5, 10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
Sammes, 2004, Phosphoric acid fuel cells: Fundamentals and applications, Curr. Opinion Solid State Mater. Sci., 8, 372, 10.1016/j.cossms.2005.01.001
Narayanan, 2006, Anhydrous proton-conducting polymeric electrolytes for fuel cells, J. Phys. Chem. B, 110, 3942, 10.1021/jp054167w
Kawahara, 2000, Synthesis and proton conductivity of thermally stable polymer electrolyte: poly (benzimidazole) complexes with strong acid molecules, Electrochim. Acta, 45, 1395, 10.1016/S0013-4686(99)00349-7
Glipa, 1999, Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole, J. Mater. Chem., 9, 3045, 10.1039/a906060j
Asensio, 2010, Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest, Chem. Soc. Rev., 39, 3210, 10.1039/b922650h
Xing, 1999, The effect of acid doping on the conductivity of polybenzimidazole (PBI), J. New Mater. Electrochem. Syst., 2, 95
Savadogo, 2000, Hydrogen/oxygen polymer electrolyte membrane fuel cell (PEMFC) based on acid-doped polybenzimidazole (PBI), J. New Mater. Electrochem. Syst., 3, 343
Vogel, 1961, Polybenzimidazoles, new thermally stable polymers, J. Polym. Sci., 50, 511, 10.1002/pol.1961.1205015419
Seel, 2009, High‐temperature polybenzimidazol‐based membranes
Galbiati, 2013, Degradation in phosphoric acid doped polymer fuel cells: a 6000h parametric investigation, Int. J. Hydrog. Energy, 38, 6469, 10.1016/j.ijhydene.2013.03.012
Puppan, 2002, Environmental evaluation of biofuels, Period. Polytech. Soc. Manag. Sci., 10, 95
Bauen, 2009
2011
Demirbas, 2008, Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy Convers. Manag., 49, 2106, 10.1016/j.enconman.2008.02.020
Sheet, 2002
Szabó, 2014, The environmental and economic aspects of a biogas power plant, 186, 149
Bauer, 2013, Biogas upgrading—review of commercial technologies
Guerreiro, 2006, Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes, Catal. Today, 118, 166, 10.1016/j.cattod.2005.12.012
Baroutian, 2011, A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst, Bioresour. Technol., 102, 1095, 10.1016/j.biortech.2010.08.076
Dube, 2007, Biodiesel production using a membrane reactor, Bioresour. Technol., 98, 639, 10.1016/j.biortech.2006.02.019
Baroutian, 2010, Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: experimental study and neural network modeling, Sep. Purif. Technol., 76, 58, 10.1016/j.seppur.2010.09.020
Shi, 2010, Preparation and characterization of the organic–inorganic hybrid membrane for biodiesel production, Bioresour. Technol., 101, 1501, 10.1016/j.biortech.2009.07.014
Castanheiro, 2006, Esterification of acetic acid by isoamylic alcohol over catalytic membranes of poly (vinyl alcohol) containing sulfonic acid groups, Appl. Catal. A Gen., 311, 17, 10.1016/j.apcata.2006.05.039
Zhu, 2010, Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production, Fuel, 89, 2299, 10.1016/j.fuel.2010.02.001
Guerreiro, 2010, PVA embedded hydrotalcite membranes as basic catalysts for biodiesel synthesis by soybean oil methanolysis, Catal. Today, 156, 191, 10.1016/j.cattod.2010.04.046
Villa, 2009, Amino-functionalized carbon nanotubes as solid basic catalysts for the transesterification of triglycerides, Chem. Commun., 4405, 10.1039/b906123a
Saleh, 2010, Glycerol removal from biodiesel using membrane separation technology, Fuel, 89, 2260, 10.1016/j.fuel.2010.04.025
Wei, 2014, A review of membrane technology for bioethanol production, Renew. Sust. Energ. Rev., 30, 388, 10.1016/j.rser.2013.10.017
Huang, 2008, A review of separation technologies in current and future biorefineries, Sep. Purif. Technol., 62, 1, 10.1016/j.seppur.2007.12.011
Parawira, 2011, Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review, Crit. Rev. Biotechnol., 31, 20, 10.3109/07388551003757816
Murthy, 2005, Concentration of xylose reaction liquor by nanofiltration for the production of xylitol sugar alcohol, Sep. Purif. Technol., 44, 221, 10.1016/j.seppur.2005.01.009
Balat, 2008, Progress in bioethanol processing, Prog. Energy Combust. Sci., 34, 551, 10.1016/j.pecs.2007.11.001
Udriot, 1989, Extractive fermentation of ethanol using membrane distillation, Biotechnol. Lett., 11, 509, 10.1007/BF01026651
Zhan, 2008, Ethanol perm-selective membranes by pervaporation, Prog. Chem., 20, 1416
Vane, 2008, Separation technologies for the recovery and dehydration of alcohols from fermentation broths, Biofuels Bioprod. Biorefin., 2, 553, 10.1002/bbb.108
Schmidt, 1997, Evaluation of PTMSP membranes in achieving enhanced ethanol removal from fermentations by pervaporation, 469
Basu, 2010, Membrane-based technologies for biogas separations, Chem. Soc. Rev., 39, 750, 10.1039/B817050A
Ylitervo, 2013, Membrane bioreactors' potential for ethanol and biogas production: a review, Environ. Technol., 34, 1711, 10.1080/09593330.2013.813559
Rasi, 2007, Trace compounds of biogas from different biogas production plants, Energy, 32, 1375, 10.1016/j.energy.2006.10.018
Baker, 2002, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 41, 1393, 10.1021/ie0108088
Mohr, 1991, Surface fluorination of polysulfone asymmetric membranes and films, J. Membr. Sci., 56, 77, 10.1016/0376-7388(91)85016-X
Guiver, 2002, Structural characterization and gas‐transport properties of brominated matrimid polyimide, J. Polym. Sci. A Polym. Chem., 40, 4193, 10.1002/pola.10516
Hess, 2007, Variation of esterfication conditions to optimize solid-state crosslinking reaction of DABA-containing copolyimide membranes for gas separations, Desalination, 217, 8, 10.1016/j.desal.2007.01.011
Kamiya, 1989, Sorption and dilation in poly (ethyl methacrylate)–carbon dioxide system, J. Polym. Sci. B Polym. Phys., 27, 879, 10.1002/polb.1989.090270412
Bos, 1998, Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations, Sep. Purif. Technol., 14, 27, 10.1016/S1383-5866(98)00057-4
Ismail, 2003, Suppression of plasticization in polysulfone membranes for gas separations by heat-treatment technique, Sep. Purif. Technol., 30, 37, 10.1016/S1383-5866(02)00097-7
Cao, 2003, Chemical cross-linking modification of 6FDA-2, 6-DAT hollow fiber membranes for natural gas separation, J. Membr. Sci., 216, 257, 10.1016/S0376-7388(03)00080-2
Hosseini, 2008, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer, 49, 1594, 10.1016/j.polymer.2008.01.052
Visser, 2007, Materials dependence of mixed gas plasticization behavior in asymmetric membranes, J. Membr. Sci., 306, 16, 10.1016/j.memsci.2007.07.048