Materials Design for Rechargeable Metal-Air Batteries
Tóm tắt
Từ khóa
Tài liệu tham khảo
Li, 2009, Research on advanced materials for Li-ion batteries, Adv. Mater., 21, 4593, 10.1002/adma.200901710
Li, 2017, Metal air batteries: will they be the future electrochemical energy storage device of choice?, ACS Energy Lett., 2, 1370, 10.1021/acsenergylett.7b00119
Lee, 2011, Metal-air batteries with high energy density: Li-air versus Zn-air, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010
Zhang, 2018, Functional and stability orientation synthesis of materials and structures in aprotic Li-O2 batteries, Chem. Soc. Rev., 47, 2921, 10.1039/C8CS00009C
Wang, 2018, A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn-air batteries, Adv. Funct. Mater., 28, 1803329, 10.1002/adfm.201803329
Ryu, 2019, Advanced technologies for high-energy aluminum-air batteries, Adv. Mater., 31, 1804784, 10.1002/adma.201804784
Yadegari, 2018, Recent advances on sodium-oxygen batteries: a chemical perspective, Acc. Chem. Res., 51, 1532, 10.1021/acs.accounts.8b00139
Yi, 2018, Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries, Energy Environ. Sci., 11, 3075, 10.1039/C8EE01991F
Maiche, L. (1878). French Patent, 127069.
Zaromb, 1962, The use and behavior of aluminum anodes in alkaline primary batteries, J. Electrochem. Soc., 109, 1125, 10.1149/1.2425257
Abraham, 1996, A polymer electrolyte-based rechargeable lithium/oxygen battery, J. Electrochem. Soc., 143, 1, 10.1149/1.1836378
Muller, 1998, Optimized zinc electrode for the rechargeable zinc-air battery, J. Appl. Electrochem., 28, 895, 10.1023/A:1003464011815
Kuboki, 2005, Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte, J. Power Sources, 146, 766, 10.1016/j.jpowsour.2005.03.082
Ogasawara, 2006, Rechargeable Li2O2 electrode for lithium batteries, J. Am. Chem. Soc., 128, 1390, 10.1021/ja056811q
Read, 2006, Ether-based electrolytes for the lithium/oxygen organic electrolyte battery, J. Electrochem. Soc., 153, A96, 10.1149/1.2131827
Imanishi, 2008, Lithium anode for lithium-air secondary batteries, J. Power Sources, 185, 1392, 10.1016/j.jpowsour.2008.07.080
Ren, 2013, A low-overpotential potassium-oxygen battery based on potassium superoxide, J. Am. Chem. Soc., 135, 2923, 10.1021/ja312059q
Hartmann, 2013, A rechargeable room-temperature sodium superoxide (NaO2) battery, Nat. Mater., 12, 228, 10.1038/nmat3486
Li, 2015, Eggplant-derived microporous carbon sheets: towards mass production of efficient bifunctional oxygen electrocatalysts at low cost for rechargeable Zn-air batteries, Chem. Commun. (Camb.), 51, 8841, 10.1039/C5CC01999K
Zhang, 2015, A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions, Nat. Nanotechnol., 10, 444, 10.1038/nnano.2015.48
Park, 2015, All-solid-state cable-type flexible zinc-air battery, Adv. Mater., 27, 1396, 10.1002/adma.201404639
Dong, 2018, Cathodically stable Li-O2 battery operations using water-in-salt electrolyte, Chem, 4, 1345, 10.1016/j.chempr.2018.02.015
Wang, 2018, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z
Chang, 2017, Recent progress in electrocatalyst for Li-O2 batteries, Adv. Energy Mater., 7, 1700875, 10.1002/aenm.201700875
Pan, 2018, Advanced architectures and relatives of air electrodes in Zn-air batteries, Adv. Sci., 5, 1700691, 10.1002/advs.201700691
Park, 2018, Redox mediators for Li-O2 batteries: status and perspectives, Adv. Mater., 30, 1704162, 10.1002/adma.201704162
Zhao, 2018, Achilles' heel of lithium-air batteries: lithium carbonate, Angew. Chem. Int. Ed., 57, 3874, 10.1002/anie.201710156
Fu, 2017, Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives, Adv. Mater., 29, 1604685, 10.1002/adma.201604685
Cao, 2012, Recent progress in non-precious catalysts for metal-air batteries, Adv. Energy Mater., 2, 816, 10.1002/aenm.201200013
Lee, 2016, Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries, J. Mater. Chem. A, 4, 7107, 10.1039/C6TA00173D
Busch, 2016, Beyond the top of the volcano? A unified approach to electrocatalytic oxygen reduction and oxygen evolution, Nano Energy, 29, 126, 10.1016/j.nanoen.2016.04.011
Huang, 2019, Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries, Adv. Mater., 31, 1803800, 10.1002/adma.201803800
Li, 2018, Multiscale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high power density, Adv. Mater., 30, e1804653, 10.1002/adma.201804653
Chen, 2015, Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and Zn-air batteries, Energy Storage Mater., 1, 17, 10.1016/j.ensm.2015.08.001
Zou, 2018, Superlong single-crystal metal-organic framework nanotubes, J. Am. Chem. Soc., 140, 15393, 10.1021/jacs.8b09092
Li, 2018, A porphyrin covalent organic framework cathode for flexible Zn-air batteries, Energy Environ. Sci., 11, 1723, 10.1039/C8EE00977E
Cheng, 2018, Atomic Fe-Nx coupled open-mesoporous carbon nanofibers for efficient and bioadaptable oxygen electrode in Mg-air batteries, Adv. Mater., 30, 1802669, 10.1002/adma.201802669
Lyu, 2017, Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries, Chem. Soc. Rev., 46, 6046, 10.1039/C7CS00255F
Feng, 2016, Critical challenges in rechargeable aprotic Li-O2 batteries, Adv. Energy Mater., 6, 1502303, 10.1002/aenm.201502303
Li, 2016, Recent advances in non-aqueous electrolyte for rechargeable Li-O2 batteries, Adv. Energy Mater., 6, 1600751, 10.1002/aenm.201600751
Ma, 2018, Fundamental understanding and material challenges in rechargeable nonaqueous Li-O2 batteries: recent progress and perspective, Adv. Energy Mater., 8, 1800348, 10.1002/aenm.201800348
Song, 2018, Anisotropic surface modulation of Pt catalysts for highly reversible Li-O2 batteries: high index facet as a critical descriptor, ACS Catal., 8, 9006, 10.1021/acscatal.8b02172
Yui, 2017, Electrochemical properties of lithium air batteries with Pt100-xRu100x (0 ≤ x ≤ 100) electrocatalysts for air electrodes, J. Power Sources, 340, 121, 10.1016/j.jpowsour.2016.11.063
Cho, 2017, Hierarchical porous carbonized Co3O4 inverse opals via combined block copolymer and colloid templating as bifunctional electrocatalysts in Li-O2 battery, Adv. Energy Mater., 7, 1700391, 10.1002/aenm.201700391
Adpakpang, 2018, Holey 2D nanosheets of low-valent manganese oxides with an excellent oxygen catalytic activity and a high functionality as a catalyst for Li-O2 batteries, Adv. Funct. Mater., 28, 1707106, 10.1002/adfm.201707106
Bi, 2019, 3D hollow α-MnO2 framework as an efficient electrocatalyst for lithium-oxygen batteries, Small, 15, 1804958, 10.1002/smll.201804958
Chen, 2015, Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance Li-O2 batteries, J. Mater. Chem. A, 3, 2559, 10.1039/C5TA00004A
Gao, 2018, Enhancing the catalytic activity of Co3O4 for Li-O2 batteries through the synergy of surface/interface/doping engineering, ACS Catal., 8, 1955, 10.1021/acscatal.7b03566
Lau, 2015, Nucleation and growth of lithium peroxide in the Li-O2 battery, Nano Lett., 15, 5995, 10.1021/acs.nanolett.5b02149
Xu, 2017, Nanoengineered ultralight and robust all-metal cathode for high-capacity, stable lithium-oxygen batteries, ACS Cent. Sci., 3, 598, 10.1021/acscentsci.7b00120
Lyu, 2019, 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries, Adv. Funct. Mater., 29, 1806658, 10.1002/adfm.201806658
Song, 2017, High-energy-density metal-oxygen batteries: lithium-oxygen batteries vs sodium-oxygen batteries, Adv. Mater., 29, 1606572, 10.1002/adma.201606572
Hwang, 2018, Recent progress in rechargeable potassium batteries, Adv. Funct. Mater., 28, 1802938, 10.1002/adfm.201802938
Xia, 2015, The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries, Nat. Chem., 7, 496, 10.1038/nchem.2260
Wang, 2018, Superoxide stabilization and a universal KO2 growth mechanism in potassium-oxygen batteries, Angew. Chem. Int. Ed., 57, 5042, 10.1002/anie.201801344
Yang, 2017, High-performance integrated self-package flexible Li-O2 battery based on stable composite anode and flexible gas diffusion layer, Adv. Mater., 29, 1700378, 10.1002/adma.201700378
Lee, 2014, Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries, Adv. Energy Mater., 4, 1301389, 10.1002/aenm.201301389
Liu, 2017, Carbon-free O2 cathode with three-dimensional ultralight nickel foam-supported ruthenium electrocatalysts for Li-O2 batteries, ChemSusChem, 10, 2714, 10.1002/cssc.201700567
Chang, 2015, A carbon- and binder-free nanostructured cathode for high-performance nonaqueous Li-O2 battery, Adv. Sci., 2, 1500092, 10.1002/advs.201500092
Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16
Sunu, 1980, Transient and failure analyses of the porous zinc electrode I, Theor. J. Electrochem. Soc., 127, 2007, 10.1149/1.2130054
Einerhand, 1991, Zinc electrode shape change II. Process and mechanism, J. Electrochem. Soc., 138, 7, 10.1149/1.2085582
Parker, 2014, Wiring zinc in three dimensions re-writes battery performance-dendrite-free cycling, Energy Environ. Sci., 7, 1117, 10.1039/C3EE43754J
Parker, 2014, Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn-air cells, ACS Appl. Mater. Interfaces, 6, 19471, 10.1021/am505266c
Parker, 2017, Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion, Science, 356, 414, 10.1126/science.aak9991
Kang, 2018, Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8, 1801090, 10.1002/aenm.201801090
Wu, 2018, Ion-sieving carbon nanoshells for deeply rechargeable Zn-based aqueous batteries, Adv. Energy Mater., 8, 1802470, 10.1002/aenm.201802470
Zhao, 2018, Ultrathin surface coating enables stabilized zinc metal anode, Adv. Mater. Interfaces, 5, 7, 10.1002/admi.201800848
Tao, 2016, Effect of adding various carbon additives to porous zinc anode in rechargeable hybrid aqueous battery, J. Alloy. Compd., 658, 119, 10.1016/j.jallcom.2015.10.225
Masri, 2013, Effect of adding carbon black to a porous zinc anode in a zinc-air battery, J. Electrochem. Soc., 160, A715, 10.1149/2.007306jes
Lee, 2006, Effect of additives on the electrochemical behaviour of zinc anodes for zinc/air fuel cells, J. Power Sources, 160, 161, 10.1016/j.jpowsour.2006.01.070
Feng, 2014, Influences of Zn-Sn-Al-hydrotalcite additive on the electrochemical performances of ZnO for zinc-nickel secondary cells, J. Electrochem. Soc., 161, A1981, 10.1149/2.0191414jes
Yan, 2015, Superior cycling stability and high rate capability of three-dimensional Zn/Cu foam electrodes for zinc-based alkaline batteries, RSC Adv., 5, 83781, 10.1039/C5RA16264E
Park, 2018, Bismuth oxide as an excellent anode additive for inhibiting dendrite formation in zinc-air secondary batteries, Appl. Surf. Sci., 456, 507, 10.1016/j.apsusc.2018.06.079
Zhou, 2019, Graphene oxide-modified zinc anode for rechargeable aqueous batteries, Chem. Eng. Sci., 194, 142, 10.1016/j.ces.2018.06.048
Stock, 2018, Homogeneous coating with an anion-exchange ionomer improves the cycling stability of secondary batteries with zinc anodes, ACS Appl. Mater. Interfaces, 10, 8640, 10.1021/acsami.7b18623
Otani, 2017, Effect of lead and tin additives on surface morphology evolution of electrodeposited zinc, Electrochim. Acta, 242, 364, 10.1016/j.electacta.2017.04.130
Jo, 2017, The effects of mechanical alloying on the self-discharge and corrosion behavior in Zn-air batteries, J. Ind. Eng. Chem., 53, 247, 10.1016/j.jiec.2017.04.032
Schmid, 2018, Zinc particles coated with bismuth oxide based glasses as anode material for zinc air batteries with improved electrical rechargeability, Electrochim. Acta, 260, 246, 10.1016/j.electacta.2017.12.041
Jo, 2017, Shield effect of polyaniline between zinc active material and aqueous electrolyte in zinc-air batteries, Appl. Surf. Sci., 422, 406, 10.1016/j.apsusc.2017.06.033
Ma, 2014, Performance of Al-1Mg-1Zn-0.1Ga-0.1Sn as anode for Al-air battery, Electrochim. Acta, 129, 69, 10.1016/j.electacta.2014.02.080
Ma, 2015, Electrochemical performances of Al-0.5Mg-0.1Sn-0.02In alloy in different solutions for Al-air battery, J. Power Sources, 293, 592, 10.1016/j.jpowsour.2015.05.113
Cheng, 2014, Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries, Small, 10, 4257, 10.1002/smll.201470130
Xu, 2014, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513, 10.1039/C3EE40795K
Bruce, 2012, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191
Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: a review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115
Yang, 2018, Research progresses on materials and electrode design towards key challenges of Li-air batteries, Energy Storage Mater., 13, 29, 10.1016/j.ensm.2017.12.020
Grande, 2015, The lithium/air battery: still an emerging system or a practical reality?, Adv. Mater., 27, 784, 10.1002/adma.201403064
Assary, 2013, The effect of oxygen crossover on the anode of a Li-O2 battery using an ether-based solvent: insights from experimental and computational studies, ChemSusChem, 6, 51, 10.1002/cssc.201200810
Geng, 2016, From lithium-oxygen to lithium-air batteries: challenges and opportunities, Adv. Energy Mater., 6, 1502164, 10.1002/aenm.201502164
Liang, 2016, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proc. Natl. Acad. Sci. U S A, 113, 2862, 10.1073/pnas.1518188113
Xiang, 2018, Improved rechargeability of lithium metal anode via controlling lithium-ion flux, Adv. Energy Mater., 8, 1802352, 10.1002/aenm.201802352
Zhang, 2016, Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth, Adv. Mater., 28, 2155, 10.1002/adma.201504117
Zhang, 2018, Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries, Joule, 2, 764, 10.1016/j.joule.2018.02.001
Song, 2017, Advances in lithium-containing anodes of aprotic Li-O2 batteries: challenges and strategies for improvements, Small Methods, 1, 1700135, 10.1002/smtd.201700135
Hassoun, 2012, A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries, Nano Lett., 12, 5775, 10.1021/nl303087j
Guo, 2015, A lithium air battery with a lithiated Al-carbon anode, Chem. Commun. (Camb.), 51, 676, 10.1039/C4CC07315K
Xu, 2018, Artificial soft-rigid protective layer for dendrite-free lithium metal anode, Adv. Funct. Mater., 28, 1705838, 10.1002/adfm.201705838
Liao, 2018, Developing a “water-defendable” and “dendrite-free” lithium-metal anode using a simple and promising GeCl4 pretreatment method, Adv. Mater., 30, 1705711, 10.1002/adma.201705711
Yan, 2018, Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition, Adv. Mater., 30, 1707629, 10.1002/adma.201707629
Zhang, 2018, An extremely simple method for protecting lithium anodes in Li-O2 batteries, Angew. Chem. Int. Ed., 57, 12814, 10.1002/anie.201807985
Cheng, 2016, Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries, Adv. Mater., 28, 2888, 10.1002/adma.201506124
Guo, 2018, Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li-air batteries, J. Mater. Chem. A, 6, 22096, 10.1039/C8TA05013A
Zhang, 2018, Advances in interfaces between Li metal anode and electrolyte, Adv. Mater. Interfaces, 5, 1701097, 10.1002/admi.201701097
McCulloch, 2015, Potassium-ion oxygen battery based on a high capacity antimony anode, ACS Appl. Mater. Interfaces, 7, 26158, 10.1021/acsami.5b08037
Chi, 2018, 3D flexible carbon felt host for highly stable sodium metal anodes, Adv. Energy Mater., 8, 1702764, 10.1002/aenm.201702764
Zhang, 2017, Nanostructured electrode materials for high-energy rechargeable Li, Na and Zn batteries, Chem. Mater., 29, 9589, 10.1021/acs.chemmater.7b03839
Sun, 2019, Revealing hidden facts of Li anode in cycled lithium oxygen batteries through X-ray and neutron tomography, ACS Energy Lett., 4, 306, 10.1021/acsenergylett.8b02242
Clark, 2017, Rational development of neutral aqueous electrolytes for zinc-air batteries, ChemSusChem, 10, 4735, 10.1002/cssc.201701468
An, 2018, Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte, J. Am. Chem. Soc., 140, 17624, 10.1021/jacs.8b09805
Xu, 2015, Rechargeable Zn-air batteries: progress in electrolyte development and cell configuration advancement, J. Power Sources, 283, 358, 10.1016/j.jpowsour.2015.02.114
Manthiram, 2015, Hybrid and aqueous lithium-air batteries, Adv. Energy Mater., 5, 1401302, 10.1002/aenm.201401302
Hong, 2016, Influence of cathodic overpotential and zincate concentration on zinc deposition in alkaline solution, J. Appl. Electrochem., 46, 1085, 10.1007/s10800-016-0990-9
Adler, 1993, Low-zinc-solubility electrolytes for use in zinc/nickel oxide cells, J. Electrochem. Soc., 140, 289, 10.1149/1.2221039
Lee, 2016, Improved reversibility of Zn anodes for rechargeable Zn-air batteries by using alkoxide and acetate ions, Electrochim. Acta, 199, 164, 10.1016/j.electacta.2016.03.148
Egan, 2013, Developments in electrode materials and electrolytes for aluminium-air batteries, J. Power Sources, 236, 293, 10.1016/j.jpowsour.2013.01.141
Liu, 2016, Synergistic effects of carboxymethyl cellulose and ZnO as alkaline electrolyte additives for aluminium anodes with a view towards Al-air batteries, J. Power Sources, 335, 1, 10.1016/j.jpowsour.2016.09.060
Grishina, 2016, Improvement of aluminum-air battery performances by the application of flax straw extract, ChemSusChem, 9, 2103, 10.1002/cssc.201600298
Eftekhari, 2018, High-energy aqueous lithium batteries, Adv. Energy Mater., 8, 1801156, 10.1002/aenm.201801156
Suo, 2015, “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries, Science, 350, 938, 10.1126/science.aab1595
Yamada, 2016, Hydrate-melt electrolytes for high-energy-density aqueous batteries, Nat. Energy, 1, 16129, 10.1038/nenergy.2016.129
Bryantsev, 2011, Predicting solvent stability in aprotic electrolyte Li-air batteries: nucleophilic substitution by the superoxide anion radical (O2•-), J. Phys. Chem. A, 115, 12399, 10.1021/jp2073914
Younesi, 2015, Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S, Energy Environ. Sci., 8, 1905, 10.1039/C5EE01215E
Du, 2013, Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries, Phys. Chem. Chem. Phys., 15, 5572, 10.1039/c3cp50500f
Li, 2013, Enhanced cycling performance of Li-O2 batteries by the optimized electrolyte concentration of LiTFSA in glymes, Adv. Energy Mater., 3, 532, 10.1002/aenm.201200776
Luo, 2017, Investigation of promising air electrode for realizing ultimate lithium oxygen battery, Adv. Energy Mater., 7, 1700234, 10.1002/aenm.201700234
Aurbach, 2016, Advances in understanding mechanisms underpinning lithium-air batteries, Nat. Energy, 1, 16128, 10.1038/nenergy.2016.128
Feng, 2015, Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery, ChemSusChem, 8, 600, 10.1002/cssc.201403338
Xin, 2018, Dendrite-free epitaxial growth of lithium metal during charging in Li-O2 batteries, Angew. Chem. Int. Ed., 57, 13206, 10.1002/anie.201808154
Gao, 2016, Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions, Nat. Mater., 15, 882, 10.1038/nmat4629
Huang, 2018, Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive, Adv. Mater., 30, 1803270, 10.1002/adma.201803270
Zhang, 2018, Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives, Angew. Chem. Int. Ed., 57, 15002, 10.1002/anie.201712702
Shiga, 2017, Coupling of nitroxyl radical as an electrochemical charging catalyst and ionic liquid for calcium plating/stripping toward a rechargeable calcium-oxygen battery, J. Mater. Chem. A, 5, 13212, 10.1039/C7TA03422A
Thomas, 2017, Suppression of water absorption by molecular design of ionic liquid electrolyte for Li-air battery, Adv. Energy Mater., 7, 1601753, 10.1002/aenm.201601753
Zhang, 2019, A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries, Nat. Commun., 10, 602, 10.1038/s41467-019-08422-8
Asadi, 2018, A lithium-oxygen battery with a long cycle life in an air-like atmosphere, Nature, 555, 502, 10.1038/nature25984
Cheng, 2019, Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes, Chem, 5, 74, 10.1016/j.chempr.2018.12.002
Liu, 2018, Rechargeable solid-state Li-air and Li-S batteries: materials, construction, and challenges, Adv. Energy Mater., 8, 1701602, 10.1002/aenm.201701602
Cheng, 2018, Gel polymer electrolytes for electrochemical energy storage, Adv. Energy Mater., 8, 1702184, 10.1002/aenm.201702184
Li, 2019, Recent advances in flexible zinc-based rechargeable batteries, Adv. Energy Mater., 9, 1802605, 10.1002/aenm.201802605
Huang, 2018, Solid-state rechargeable Zn//NiCo and Zn-air batteries with ultralong lifetime and high capacity: the role of a sodium polyacrylate hydrogel electrolyte, Adv. Energy Mater., 8, 1802288, 10.1002/aenm.201802288
Lei, 2018, Flexible lithium-air battery in ambient air with an in situ formed gel electrolyte, Angew. Chem. Int. Ed., 57, 16131, 10.1002/anie.201810882
Zou, 2018, Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li-O2/air batteries workable under hurdle conditions, Small, 14, 1801798, 10.1002/smll.201801798
Balaish, 2015, Liquid-free lithium-oxygen batteries, Angew. Chem. Int. Ed., 54, 436, 10.1002/anie.201408008
Liu, 2018, Germanium thin film protected lithium aluminum germanium phosphate for solid-state Li batteries, Adv. Energy Mater., 8, 1702374, 10.1002/aenm.201702374
Fan, 2018, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater., 8, 1702657, 10.1002/aenm.201702657
Wang, 2018, Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries, Nano Res., 11, 3434, 10.1007/s12274-018-1972-5
Fujiwara, 2011, Reversible air electrodes integrated with an anion-exchange membrane for secondary air batteries, J. Power Sources, 196, 808, 10.1016/j.jpowsour.2010.07.074
Stock, 2018, Towards zinc-oxygen batteries with enhanced cycling stability: the benefit of anion-exchange ionomer for zinc sponge anodes, J. Power Sources, 395, 195, 10.1016/j.jpowsour.2018.05.079
Hwang, 2016, Selective ion transporting polymerized ionic liquid membrane separator for enhancing cycle stability and durability in secondary zinc-air battery systems, ACS Appl. Mater. Interfaces, 8, 26298, 10.1021/acsami.6b07841
Kim, 2016, Artificially engineered, bicontinuous anion-conducting/-repelling polymeric phases as a selective ion transport channel for rechargeable zinc-air battery separator membranes, J. Mater. Chem. A, 4, 3711, 10.1039/C5TA09576J
Qiao, 2018, MOF-based separator in an Li-O2 battery: an effective strategy to restrain the shuttling of dual redox mediators, ACS Energy Lett., 3, 463, 10.1021/acsenergylett.8b00014
Lee, 2017, An advanced separator for Li-O2 batteries: Maximizing the effect of redox mediators, Adv. Energy Mater., 7, 1602417, 10.1002/aenm.201602417