Material modeling of 6016-O and 6016-T4 aluminum alloy sheets and application to hole expansion forming simulation

International Journal of Plasticity - Tập 93 - Trang 164-186 - 2017
Toshihiko Kuwabara1, Takahiro Mori1, Mineo Asano2, Tomoyuki Hakoyama1, Frédéric Barlat3
1Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei-shi, Tokyo 184-8588, Japan
2Automotive Material Development Section, No.6 Research Department, Research & Development Division, UACJ Corporation, 3-1-12 Chitose, Minato-ku, Nagoya, 455-8670, Japan
3Materials Mechanics Laboratory, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, San 31 Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, South Korea

Tài liệu tham khảo

Andar, 2012, Material modeling of AZ31 Mg sheet considering variation of r-values and asymmetry of the yield locus, Mater. Sci. Eng. A, 549, 82, 10.1016/j.msea.2012.04.009 Andar, 2010, Elastic-plastic and inelastic characteristics of high strength steel sheets under biaxial loading and unloading, ISIJ, 50, 613, 10.2355/isijinternational.50.613 Anjabin, 2014, Crystal plasticity modeling of the effect of precipitate states on the work hardening and plastic anisotropy in an Al–Mg–Si alloy, Comput. Mater. Sci., 83, 78, 10.1016/j.commatsci.2013.09.031 Ardeljan, 2016, Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy, Int. J. Plast., 83, 90, 10.1016/j.ijplas.2016.04.005 Asano, 2013, Microstructural control to improve the formability of automotive body stock, J. JILM, 54, 166 Banabic, 2010, Advances in anisotropy and formability, Int. J. Mater. Form., 3, 165, 10.1007/s12289-010-0992-9 Barlat, 1987, Crystallographic texture, anisotropic yield surfaces and forming limits of sheet metals, Mater. Sci. Eng., 91, 55, 10.1016/0025-5416(87)90283-7 Barlat, 2005, Linear transformation-based anisotropic yield functions, Int. J. Plast., 21, 1009, 10.1016/j.ijplas.2004.06.004 Barlat, 2003, Plane stress yield function for aluminum alloy sheets—part 1: theory, Int. J. Plast., 19, 1297, 10.1016/S0749-6419(02)00019-0 Barlat, 2016, Anisotropic yield conditions in mathematical theory of plasticity, J. JSTP, 57, 230, 10.9773/sosei.57.230 Barlat, 1998, Modeling precipitate-induced anisotropy in binary Al-Cu alloys, Mat. Sci. Eng., A257, 47, 10.1016/S0921-5093(98)00823-5 Barlat, 1987, Prediction of tricomponent plane stress yield surfaces and associated flow and failure behavior of strongly textured fcc sheets, Mater. Sci. Eng., 95, 15, 10.1016/0025-5416(87)90494-0 Barlat, 1991, Influence of precipitate microstructure on flow and failure properties of an aluminum alloy sheet, Acta Met. Mater., 39, 391, 10.1016/0956-7151(91)90318-U Bate, 1981, The plastic anisotropy of two-phase aluminium alloys—I. Anisotropy in unidirectional deformation, Acta Metall., 29, 1797, 10.1016/0001-6160(81)90106-1 Bate, 1982, The plastic anisotropy of two-phase aluminium alloys—II. anisotropic behaviour in load-reversal tests, Acta Metall., 30, 725, 10.1016/0001-6160(82)90122-5 Brown, 1971, The work-hardening of copper-silica—I. A model based on internal stresses, with no plastic relaxation, Phil. Mag., 23, 1185, 10.1080/14786437108217405 Brown, 1971, The work-hardening of copper-silica, Phil. Mag., 23, 1201, 10.1080/14786437108217406 Deng, 2015, Cruciform specimen design and verification for constitutive identification of anisotropic sheets, Exp. Mech., 55, 1005, 10.1007/s11340-015-9999-y Dick, 2015, Anisotropy of thin-walled tubes by a new method of combined tension and shear loading, Int. J. Plast., 71, 87, 10.1016/j.ijplas.2015.04.006 Dunand, 2012, Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading – Part I: Plasticity, Int. J. Plast., 36, 34, 10.1016/j.ijplas.2012.03.003 Dutta, 1991, A calorimetric study of precipitation in commercial aluminium alloy 6061, J. Mater. Sci. Lett., 10, 323, 10.1007/BF00719697 Esmaeili, 2004, Effect of composition on clustering reactions in AlMgSi(Cu) alloys, Scr. Mater., 50, 155, 10.1016/j.scriptamat.2003.08.030 Fourmeau, 2011, On the plastic anisotropy of an aluminium alloy and its influence on constrained multiaxial flow, Int. J. Plast., 27, 2005, 10.1016/j.ijplas.2011.05.017 Gerold, 1979, vol. 4, 221 Grytten, 2008, Evaluation of identification methods for YLD2004-18p, Int. J. Plast., 24, 2248, 10.1016/j.ijplas.2007.11.005 Guan, 2006, Finite element modeling of tube hydroforming of polycrystalline aluminum alloy extrusions, Int. J. Plast., 22, 2366, 10.1016/j.ijplas.2006.04.003 Hakoyama, 2015, Effect of equivalent stress-strain relation and differential hardening on accuracy of forming limit analyses, Key Eng. Mater., 651–653, 9, 10.4028/www.scientific.net/KEM.651-653.9 Hanabusa, 2010, Evaluation of accuracy of stress measurements determined in biaxial stress tests with cruciform specimen using numerical method, Steel Res. Int., 81, 1376 Hanabusa, 2013, Numerical verification of a biaxial tensile test method using a cruciform specimen, J. Mater. Process. Technol., 213, 961, 10.1016/j.jmatprotec.2012.12.007 Hashimoto, 2010, Effect of anisotropic yield functions on the accuracy of hole expansion simulations for 590MPa grade steel sheet, Tetsu-to-Hagané, 96, 557, 10.2355/tetsutohagane.96.557 Hatch, 2004 Hershey, 1954, The plasticity of an isotropic aggregate of anisotropic face centred cubic crystals, J. Appl. Mech., 21, 241, 10.1115/1.4010900 Hill, 1948, A theory of the yielding and plastic flow of anisotropic metals, Proc. R. Soc. Lond., A193, 281, 10.1098/rspa.1948.0045 Hill, 1994, An investigation of plastic flow and differential work hardening in orthotropic brass tubes under fluid pressure and axial load, Int. J. Solids Struct., 31, 2999, 10.1016/0020-7683(94)90065-5 Hill, 1992, Differential hardening in sheet metal under biaxial loading: a theoretical framework, J. Appl. Mech., 59, S1, 10.1115/1.2899489 Hosford, 1972, The anisotropy of age-hardened Al-4 Pct Cu single crystals during plane-strain compression, Metall. Trans., 3, 113, 10.1007/BF02680590 Ishiki, 2011, Measurement and analysis of differential work hardening behavior of pure titanium sheet using spline function, Int. J. Mater. Form., 4, 193, 10.1007/s12289-010-1024-5 ISO 16808, 2014 ISO 16842, 2014 Johnsen, 2013, A nano-scale material model applied in finite element analysis of aluminium plates under impact loading, Comp. Mater. Sci., 79, 724, 10.1016/j.commatsci.2013.07.035 Khadyko, 2016, Latent hardening and plastic anisotropy evolution in AA6060 aluminium alloy, Int. J. Plast., 76, 51, 10.1016/j.ijplas.2015.07.010 Khan, 2009, vol. 25, 1611 Korkolis, 2008, Inflation and burst of anisotropic aluminum tubes for hydroforming applications, Int. J. Plasticity, 24, 509, 10.1016/j.ijplas.2007.07.010 Korkolis, 2008, Inflation and burst of aluminum tubes. Part II: an advanced yield function including deformation-induced anisotropy, Int. J. Plast., 24, 1625, 10.1016/j.ijplas.2008.02.011 Korkolis, 2009, Path-dependent failure of inflated aluminum tubes, Int. J. Plast., 25, 2059, 10.1016/j.ijplas.2008.12.016 Kuroda, 2000, Effect of strain path change on limits to ductility of anisotropic metal sheets, Int. J. Mech. Sci., 42, 867, 10.1016/S0020-7403(99)00029-6 Kuwabara, 2007, Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations, Int. J. Plast., 23, 385, 10.1016/j.ijplas.2006.06.003 Kuwabara, 2014, Biaxial stress testing methods for sheet metals, vol. 1, 95 Kuwabara, 2011, Effect of anisotropic yield functions on the accuracy of hole expansion simulations, J. Mater. Process. Technol., 211, 475, 10.1016/j.jmatprotec.2010.10.025 Kuwabara, 2015, Hole expansion simulation considering the differential hardening of a sheet metal, Ro. J. Techn. Sci. Appl. Mech., 60, 63 Kuwabara, 1998, Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Process. Technol., 80/81, 517, 10.1016/S0924-0136(98)00155-1 Kuwabara, 2013, Multiaxial tube expansion test method for measurement of sheet metal deformation behavior under biaxial tension for a large strain range, Int. J. Plast., 45, 103, 10.1016/j.ijplas.2012.12.003 Kuwabara, 2002, Measurement and analysis of yield locus and work-hardening characteristics of steel sheets with different r-values, Acta Mater., 50, 3717, 10.1016/S1359-6454(02)00184-2 Kuwabara, 2005, Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure, Int. J. Plasticity, 21, 101, 10.1016/j.ijplas.2004.04.006 Leacock, 2013, Evolution of mechanical properties in a 7075 Al-alloy subject to natural ageing, Mater. Des., 49, 160, 10.1016/j.matdes.2013.02.023 Lebensohn, 1993, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta Metall. Mater., 41, 2611, 10.1016/0956-7151(93)90130-K Li, 1991, Strain path changes effects in cube textured aluminum, Acta Metall. Mater., 39, 2639, 10.1016/0956-7151(91)90080-K Lopes, 2003, Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear, Int. J. Plast., 19, 1, 10.1016/S0749-6419(01)00016-X Lücke, 1952, Uber die Verfestigungskurve von Reinstaluminiumkristallen und die Bildung von Deformationsbandern, Z. Met., 43, 55 Luo, 2012, Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading – Part II: ductile fracture, Int. J. Plast., 32–33, 36, 10.1016/j.ijplas.2011.11.001 Martin, 1968 Martin, 1980 Matsuda, 1998, High-resolution electron microscopy on the structure of Guinier-Preston zones in an Al-1.6 mass Pct Mg2Si alloy, Metallurgical Mater. Trans. A, 29, 1161, 10.1007/s11661-998-0242-7 Sehitoglu, 2005, Precipitate effects on the mechanical behavior of aluminum copper alloys: Part I. Experiments, Metall. Mater. Trans., 36A, 750 Sehitoglu, 2005, Precipitate effects on the mechanical behavior of aluminum copper alloys: Part II. Modeling, Metall. Mater. Trans., 36A, 763, 10.1007/s11661-005-1007-1 Seyedrezai, 2009, Study of the early stages of clustering in Al-Mg-Si alloys using the electrical resistivity measurements, Mater. Sci. Eng. A, 525, 186, 10.1016/j.msea.2009.06.054 Starke, 1989, Heat-treatable aluminum alloys Torsæter, 2010, The influence of composition and natural aging on clustering during preaging in Al–Mg–Si alloys, J. App. Phys., 108, 1 Von Mises, 1913, Mechanik der festen Korper un plastich deformablen Zustant. Göttingen Nachrichten, Math. Phys. Kl., 582 Yamanaka, 2015, Material modeling and forming simulation of 5182 aluminum alloy sheet using numerical biaxial tensile test based on homogenized crystal plasticity finite element method, J. JILM, 65, 561, 10.2464/jilm.65.561 Yanaga, 2012, Material modeling of 6000 series aluminum alloy sheets with different density cube textures and effect on the accuracy of finite element simulation, Int. J. Solids Struct., 49, 3488, 10.1016/j.ijsolstr.2012.03.005 Yin, 2016, Effect of natural ageing and pre-straining on the hardening behaviour and microstructural response during artificial ageing of an Al–Mg–Si–Cu alloy, Mater. Des., 95, 329, 10.1016/j.matdes.2016.01.119 Yoon, 2004, Plane stress yield function for aluminum alloy sheets—part II: FE formulation and its implementation, Int. J. Plast., 20, 495, 10.1016/S0749-6419(03)00099-8 Yoon, 2005, Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets, Int. J. Plast., 21, 2426, 10.1016/j.ijplas.2005.03.014 Yoshida, 2014, Work-hardening behavior of polycrystalline aluminum alloy under multiaxial stress paths, Int. J. Plast., 53, 17, 10.1016/j.ijplas.2013.07.003 Yoshida, 2007, The effects of texture on formability of aluminum alloy sheets, Acta Mater., 55, 4499, 10.1016/j.actamat.2007.04.014 Yoshida, 2012, Numerical investigation on a key factor in superior stretchability of face-centered cubic polycrystalline sheets, Int. J. Mech. Sci., 58, 47, 10.1016/j.ijmecsci.2012.02.009 Zandbergen, 2015, Study of precipitation in Al–Mg–Si alloys by Atom Probe Tomography I. Microstructural changes as a function of ageing temperature, Acta Mater., 101, 136, 10.1016/j.actamat.2015.08.017