Material distribution resembled level set method for optimal shape design of Stokes flow

Applied Mathematics and Computation - Tập 266 - Trang 21-30 - 2015
Xianbao Duan1, Feifei Li1
1School of Sciences, Xi’an University of Technology, 5 South Jinhua Road, Xi’an, Shaanxi 710048, PR China

Tài liệu tham khảo

Borrvall, 2003, Topology optimization of fluid in stokes flow, Int. J. Numer. Methods Fluid, 41, 77, 10.1002/fld.426 Pironneau, 1973, On optimal profiles in stokes flow, J. Fluid Mech., 59, 117, 10.1017/S002211207300145X Pironneau, 1974, On optimum design in fluid mechanics, J. Fluid Mech., 64, 97, 10.1017/S0022112074002023 Modhammadi, 2004, Shape optimization in fluid mechanics, Annu. Rev. Fluid Mech., 36, 255, 10.1146/annurev.fluid.36.050802.121926 Eschenauer, 2001, Topology optimization of continuum structures: a review, Appl. Mech. Rev., 54, 331, 10.1115/1.1388075 Guest, 2006, Optimization of creeping fluid flows using a Darcy–Stokes finite element, Int. J. Numer. Methods Eng., 66, 461, 10.1002/nme.1560 Steven, 2000, Evolutionary topology and shape design for physical field problems, Comput. Mech., 26, 129, 10.1007/s004660000160 Wiker, 2007, Topology optimization of regions of Darcy and Stokes flow, Int. J. Numer. Methods Engng., 69, 1374, 10.1002/nme.1811 Bendsoe, 2003 Sokolowski, 1992, Introduction to shape optimization: shape sensitivity analysis Simon, 1980, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2, 649, 10.1080/01630563.1980.10120631 Bendsoe, 1988, Generating optimal topologies in optimal design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 197, 10.1016/0045-7825(88)90086-2 Allaire, 2002 Deng, 2014, Combination of topology optimization and optimal control method, J. Comput. Phys., 257, 374, 10.1016/j.jcp.2013.09.033 Bendsoe, 1995 Rozvany, 2001, Aims scope methods history and unified terminology of computer-aided optimization in structural mechanics, Struct. Multidisc. Optim., 21, 90, 10.1007/s001580050174 Bendsoe, 1999, Material interpolations in topology optimization, Arch. Appl. Mech., 69, 635, 10.1007/s004190050248 Gersborg-Hansen, 2005, Topology optimization of channel flow problems, Struct. Multidisc. Optim., 29, 1 Kreissl, 2011, Topology optimization for unsteady flow, Int. J. Numer. Methods Eng., 87, 1229, 10.1002/nme.3151 Olessen, 2006, A high-level programming-language implementation of optimization applied to steady-state Navier-Stokes flow, Int. J. Numer. Methods Eng., 65, 975, 10.1002/nme.1468 Aage, 2008, Optimization of large scale stokes flow problems, Struct. Multidisc. Optim., 35, 175, 10.1007/s00158-007-0128-0 Svanberg, 1987, The method of moving asymptotes – a new method for structural optimization, Int. J. Numer. Method Eng., 24, 359, 10.1002/nme.1620240207 Osher, 1988, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79, 12, 10.1016/0021-9991(88)90002-2 Osher, 2002 Allaire, 2002, A level-set method for shape optimization, C. R. Acad. Sci. Paris, Ser. I., 334, 1125, 10.1016/S1631-073X(02)02412-3 Allair, 2004, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363, 10.1016/j.jcp.2003.09.032 Amstutz, 2006, A new algorithm for topology optimization using a level-set method, J. Comput. Phys., 216, 573, 10.1016/j.jcp.2005.12.015 Basting, 2014, A hybrid level set/front tracking approach for finite element simulations of two-phase flows, J. Comput. Appl. Math., 270, 471, 10.1016/j.cam.2013.12.014 Sethian, 1999 Chan, 2001, Active contours without edges, IEEE Trans. Imag. Proc., 10, 266, 10.1109/83.902291 C.M. Li, C.Y. Xu, C. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, CVPR’ 05 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 1, pp 430–436. Kass, 1988, Snakes: active contour models, Int. J. Comput. Vis., 1, 321, 10.1007/BF00133570 Zhao, 1996, A variational level set approach to multiphase motion, J. Comput. Phys., 127, 179, 10.1006/jcph.1996.0167 J. Sokolowski, Z. A, 1997, On Topological Derivative in Shape Optimization, Research Report No. 3170, INRIA Lorraine, Nancy, France. Abdelwahed, 2009, Optimal shape design for fluid flow using topological perturbation technique, J. Math. Anal. Appl., 356, 548, 10.1016/j.jmaa.2009.02.045 Burger, 2004, Incorporating topological derivatives into level set methods, J. Comput. Phys., 194, 344, 10.1016/j.jcp.2003.09.033 He, 2007, Incorporating topological derivatives into shape derivatives based level set methods, J. Comput. Phys., 225, 891, 10.1016/j.jcp.2007.01.003 Allaire, 2005, Structural optimization using topological and shape sensitivity via a level set method, Control Cybern., 34, 59 Challis, 2009, Level set topology optimization of fluids in stokes flow, Int. J. Numer. Methods Eng., 79, 1284, 10.1002/nme.2616 Wang, 2003, A level set method for structural topology optimization, Comp. Meth. Appl. Mech. Eng., 192, 227, 10.1016/S0045-7825(02)00559-5 Duan, 2008, Shape-topology optimization for Navier–Stokes problem using variational level set method, J. Comput. Appl. Math., 222, 487, 10.1016/j.cam.2007.11.016 Duan, 2008, Optimal shape control of fluid flow using variational level set method, Phys. Lett. A, 372, 1374, 10.1016/j.physleta.2007.09.070 Duan, 2014, Shape identification for Navier–Stokes problem using shape sensitivity analysis and level set method, Appl. Math. Comput., 231, 1 Novotny, 2013 Arnold, 1983 Michaleris, 1994, Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity, Int. J. Numer. Meth. Eng., 37, 2471, 10.1002/nme.1620371408 Amstutz, 2005, The topological asymptotic for the Navier–Stokes equations, ESAIM: Control Optim. Calc. Var., 11, 401, 10.1051/cocv:2005012 Pingen, 2007, Topology optimization of flow domains using the lattice Boltzmann method, Struct. Multidisc. Optim., 34, 507, 10.1007/s00158-007-0105-7