Material distribution resembled level set method for optimal shape design of Stokes flow
Tài liệu tham khảo
Borrvall, 2003, Topology optimization of fluid in stokes flow, Int. J. Numer. Methods Fluid, 41, 77, 10.1002/fld.426
Pironneau, 1973, On optimal profiles in stokes flow, J. Fluid Mech., 59, 117, 10.1017/S002211207300145X
Pironneau, 1974, On optimum design in fluid mechanics, J. Fluid Mech., 64, 97, 10.1017/S0022112074002023
Modhammadi, 2004, Shape optimization in fluid mechanics, Annu. Rev. Fluid Mech., 36, 255, 10.1146/annurev.fluid.36.050802.121926
Eschenauer, 2001, Topology optimization of continuum structures: a review, Appl. Mech. Rev., 54, 331, 10.1115/1.1388075
Guest, 2006, Optimization of creeping fluid flows using a Darcy–Stokes finite element, Int. J. Numer. Methods Eng., 66, 461, 10.1002/nme.1560
Steven, 2000, Evolutionary topology and shape design for physical field problems, Comput. Mech., 26, 129, 10.1007/s004660000160
Wiker, 2007, Topology optimization of regions of Darcy and Stokes flow, Int. J. Numer. Methods Engng., 69, 1374, 10.1002/nme.1811
Bendsoe, 2003
Sokolowski, 1992, Introduction to shape optimization: shape sensitivity analysis
Simon, 1980, Differentiation with respect to the domain in boundary value problems, Numer. Funct. Anal. Optim., 2, 649, 10.1080/01630563.1980.10120631
Bendsoe, 1988, Generating optimal topologies in optimal design using a homogenization method, Comput. Methods Appl. Mech. Eng., 71, 197, 10.1016/0045-7825(88)90086-2
Allaire, 2002
Deng, 2014, Combination of topology optimization and optimal control method, J. Comput. Phys., 257, 374, 10.1016/j.jcp.2013.09.033
Bendsoe, 1995
Rozvany, 2001, Aims scope methods history and unified terminology of computer-aided optimization in structural mechanics, Struct. Multidisc. Optim., 21, 90, 10.1007/s001580050174
Bendsoe, 1999, Material interpolations in topology optimization, Arch. Appl. Mech., 69, 635, 10.1007/s004190050248
Gersborg-Hansen, 2005, Topology optimization of channel flow problems, Struct. Multidisc. Optim., 29, 1
Kreissl, 2011, Topology optimization for unsteady flow, Int. J. Numer. Methods Eng., 87, 1229, 10.1002/nme.3151
Olessen, 2006, A high-level programming-language implementation of optimization applied to steady-state Navier-Stokes flow, Int. J. Numer. Methods Eng., 65, 975, 10.1002/nme.1468
Aage, 2008, Optimization of large scale stokes flow problems, Struct. Multidisc. Optim., 35, 175, 10.1007/s00158-007-0128-0
Svanberg, 1987, The method of moving asymptotes – a new method for structural optimization, Int. J. Numer. Method Eng., 24, 359, 10.1002/nme.1620240207
Osher, 1988, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comp. Phys., 79, 12, 10.1016/0021-9991(88)90002-2
Osher, 2002
Allaire, 2002, A level-set method for shape optimization, C. R. Acad. Sci. Paris, Ser. I., 334, 1125, 10.1016/S1631-073X(02)02412-3
Allair, 2004, Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363, 10.1016/j.jcp.2003.09.032
Amstutz, 2006, A new algorithm for topology optimization using a level-set method, J. Comput. Phys., 216, 573, 10.1016/j.jcp.2005.12.015
Basting, 2014, A hybrid level set/front tracking approach for finite element simulations of two-phase flows, J. Comput. Appl. Math., 270, 471, 10.1016/j.cam.2013.12.014
Sethian, 1999
Chan, 2001, Active contours without edges, IEEE Trans. Imag. Proc., 10, 266, 10.1109/83.902291
C.M. Li, C.Y. Xu, C. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, CVPR’ 05 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol 1, pp 430–436.
Kass, 1988, Snakes: active contour models, Int. J. Comput. Vis., 1, 321, 10.1007/BF00133570
Zhao, 1996, A variational level set approach to multiphase motion, J. Comput. Phys., 127, 179, 10.1006/jcph.1996.0167
J. Sokolowski, Z. A, 1997, On Topological Derivative in Shape Optimization, Research Report No. 3170, INRIA Lorraine, Nancy, France.
Abdelwahed, 2009, Optimal shape design for fluid flow using topological perturbation technique, J. Math. Anal. Appl., 356, 548, 10.1016/j.jmaa.2009.02.045
Burger, 2004, Incorporating topological derivatives into level set methods, J. Comput. Phys., 194, 344, 10.1016/j.jcp.2003.09.033
He, 2007, Incorporating topological derivatives into shape derivatives based level set methods, J. Comput. Phys., 225, 891, 10.1016/j.jcp.2007.01.003
Allaire, 2005, Structural optimization using topological and shape sensitivity via a level set method, Control Cybern., 34, 59
Challis, 2009, Level set topology optimization of fluids in stokes flow, Int. J. Numer. Methods Eng., 79, 1284, 10.1002/nme.2616
Wang, 2003, A level set method for structural topology optimization, Comp. Meth. Appl. Mech. Eng., 192, 227, 10.1016/S0045-7825(02)00559-5
Duan, 2008, Shape-topology optimization for Navier–Stokes problem using variational level set method, J. Comput. Appl. Math., 222, 487, 10.1016/j.cam.2007.11.016
Duan, 2008, Optimal shape control of fluid flow using variational level set method, Phys. Lett. A, 372, 1374, 10.1016/j.physleta.2007.09.070
Duan, 2014, Shape identification for Navier–Stokes problem using shape sensitivity analysis and level set method, Appl. Math. Comput., 231, 1
Novotny, 2013
Arnold, 1983
Michaleris, 1994, Tangent operators and design sensitivity formulations for transient non-linear coupled problems with applications to elastoplasticity, Int. J. Numer. Meth. Eng., 37, 2471, 10.1002/nme.1620371408
Amstutz, 2005, The topological asymptotic for the Navier–Stokes equations, ESAIM: Control Optim. Calc. Var., 11, 401, 10.1051/cocv:2005012
Pingen, 2007, Topology optimization of flow domains using the lattice Boltzmann method, Struct. Multidisc. Optim., 34, 507, 10.1007/s00158-007-0105-7