Material Geometry

Marcelo Epstein1, Víctor Manuel Jiménez2, Manuel de León2
1University of Calgary, Calgary, Canada
2Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Madrid, Spain

Tóm tắt

Walter Noll’s trailblazing constitutive theory of material defects in smoothly uniform bodies is recast in the language of Lie groupoids and their associated Lie algebroids. From this vantage point the theory is extended to non-uniform bodies by introducing the notion of singular material distributions and the physically cognate idea of graded uniformity and homogeneity.

Từ khóa


Tài liệu tham khảo

Bilby, B.A.: Continuous distributions of dislocations. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics I, pp. 329–398. North-Holland, Amsterdam (1960)

Bloom, F.: Modern Differential Geometric Techniques in the Theory of Continuous Distributions of Dislocations. Lecture Notes in Mathematics, vol. 733. Springer, Berlin (1979)

Elżanowski, M., Epstein, M., Śniatycki, J.: G-structures and material homogeneity. J. Elast. 23, 167–180 (1990)

Epstein, M., de León, M.: Geometrical theory of uniform Cosserat media. J. Geom. Phys. 26, 127–170 (1998)

Epstein, M., de León, M.: Homogeneity without uniformity: toward a mathematical theory of functionally graded materials. Int. J. Solids Struct. 37, 7577–7591 (2000)

Epstein, M., de León, M.: Material groupoids and algebroids. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286518755229

Epstein, M., Segev, R.: Differentiable manifolds and the principle of virtual work in continuum mechanics. J. Math. Phys. 21, 1243–1245 (1980)

Eshelby, J.D.: The continuum theory of lattice defects. In: Seitz, F., Turnbull, D. (eds.) Solid State Physics 3, pp. 79–144. Elsevier, Amsterdam (1956)

Frank, F.C.: Crystal dislocations—elementary concepts and definitions. Philos. Mag. 42, 809–819 (1951)

Jiménez, V.M., de León, M., Epstein, M.: Material distributions. Math. Mech. Solids (2018). https://doi.org/10.1177/1081286517736922

de Jiménez, V.M., León, M., Epstein, M.: Characteristic distribution: an application to material bodies. J. Geom. Phys. 127, 19–31 (2018)

Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley, New York (1963)

Kondo, K.: Geometry of Elastic Deformation and incompatibility. RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and Physical Sciences by means of Geometry, Tokyo Gakujutsu Benken Fukyu-Kai 1/C, 361–373 (1955)

Kroener, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4, 273–334 (1959)

Mackenzie, K.: Lie Groupoids and Lie Algebroids in Differential Geometry. London Math. Soc. Lecture Notes Series, vol. 124. Cambridge University Press, Cambridge (1987)

Michor, P.W.: Topics in Differential Geometry. Am. Math. Soc., Providence (2008)

Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch. Ration. Mech. Anal. 27, 1–32 (1967)

Segev, R.: Forces and the existence of stresses in invariant continuum mechanics. J. Math. Phys. 27, 163–170 (1986)

Wang, C-C.: On the geometric structures of simple bodies, a mathematical foundation for the theory of continuous distributions of dislocations. Arch. Ration. Mech. Anal. 27, 33–94 (1967)

Weinstein, A.: Groupoids: unifying internal and external symmetry. Not. Am. Math. Soc. 43(7), 744–752 (1996)