Matched pairs of human prostate stromal cells display differential tropic effects on LNCaP prostate cancer cells

Xiaojuan Sun1, Hui He1, Zhihui Xie1, Weiping Qian1, Haiyen E. Zhau1, Leland W. K. Chung1, Fray F. Marshall1, Ruoxiang Wang1
1Molecular Urology and Therapeutics, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, USA

Tóm tắt

Prostate stromal cells may play binary roles in the process of prostate cancer development. As the first to be encountered by infiltrating prostate cancer cells, prostate stromal cells form the first defense line against prostate cancer progression and metastasis. However, interaction between prostate cancer and stromal cells may facilitate the formation of a tumor microenvironment favoring cancer cell growth and survival. To establish an experimental system for studying the interaction between cancer and stromal cells, we isolated three matched pairs of normal and cancer-associated human prostate stromal clones. In this report, we describe the morphologic and behavioral characteristics of these cells and their effect on LNCaP prostate cancer cells in co-culture. Unlike LNCaP prostate cancer cells, the isolated prostate stromal clones are large fibroblast-like cells with a slow proliferation rate. Growth and survival of these clones are not affected by androgens. The stromal cells display high resistance to serum starvation, while cancer-associated stromal clones have differentiated survival ability. In co-culture experiments, the stromal cells protected some LNCaP prostate cancer cells from death by serum starvation, and cancer-associated stromal clones showed more protection. This work thus established a panel of valuable human prostate stromal cell lines, which could be used in co-culture to study the interaction between prostate cancer and prostate stromal cells.

Từ khóa


Tài liệu tham khảo

Ayala G.; Tuxhorn J. A.; Wheeler T. M.; Frolov A.; Scardino P. T.; Ohori M.; Wheeler M.; Spitler J.; Rowley D. R. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin. Cancer Res. 9(13): 4792–4801; 2003.

Chung L. W. The role of stromal-epithelial interaction in normal and malignant growth. Cancer. Surv. 23: 33–42; 1995.

Chung L. W.; Cunha G. R. Stromal-epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate. 4(5): 503–511; 1983.

Condon M. S. The role of the stromal microenvironment in prostate cancer. Semin. Cancer Biol. 15(2): 132–137; 2005.

Craft N.; Chhor C.; Tran C.; Belldegrun A.; DeKernion J.; Witte O. N.; Said J.; Reiter R. E.; Sawyers C. L. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 59(19): 5030–5036; 1999.

Cunha G. R. Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer. 74(3 Suppl): 1030–1044; 1994.

Cunha G. R.; Cooke P. S.; Kurita T. Role of stromal-epithelial interactions in hormonal responses. Arch. Histol. Cytol. 67(5): 417–434; 2004.

Cunha G. R.; Foster B.; Thomson A.; Sugimura Y.; Tanji N.; Tsuji M.; Terada N.; Finch P. W.; Donjacour A. A. Growth factors as mediators of androgen action during the development of the male urogenital tract. World J. Urol. 13(5): 264–276; 1995.

Cunha G. R.; Hayward S. W.; Wang Y. Z. Role of stroma in carcinogenesis of the prostate. Differentiation. 70(9–10): 473–485; 2002.

English H. F.; Drago J. R.; Santen R. J. Cellular response to androgen depletion and repletion in the rat ventral prostate: autoradiography and morphometric analysis. Prostate. 7(1): 41–51; 1985.

Fasciana C.; van der Made A. C.; Faber P. W.; Trapman J. Androgen regulation of the rat keratinocyte growth factor (KGF/FGF7) promoter. Biochem. Biophys. Res. Commun. 220(3): 858–863; 1996.

Gleave M.; Hsieh J. T.; Gao C. A.; von Eschenbach A. C.; Chung L. W. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 51(14): 3753–3761; 1991.

Harding M. A.; Theodorescu D. Prostate tumor progression and prognosis. interplay of tumor and host factors. Urol. Oncol. 5(6): 258–264; 2000.

He H.; Yang X.; Davidson A. J.; Wu D.; Marshall F. F.; Chung L. W.; Zhau H. E.; Wang R. Progressive epithelial to mesenchymal transitions in ARCaPE prostate cancer cells during xenograft tumor formation and metastasis. Prostate 70: 518–528; 2009.

Kogan-Sakin I.; Cohen M.; Paland N.; Madar S.; Solomon H.; Molchadsky A.; Brosh R.; Buganim Y.; Goldfinger N.; Klocker H.; Schalken J. A.; Rotter V. Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1. Carcinogenesis. 30(4): 698–705; 2009.

Koivisto P.; Visakorpi T.; Kallioniemi O. P. Androgen receptor gene amplification: a novel molecular mechanism for endocrine therapy resistance in human prostate cancer. Scand. J. Clin. Lab. Invest. Suppl. 226: 57–63; 1996.

Lippert M. C.; Keefer D. A. Prostate adenocarcinoma: effects of castration on in situ androgen uptake by individual cell types. J. Urol. 137(1): 140–145; 1987.

Loberg R. D.; Gayed B. A.; Olson K. B.; Pienta K. J. A paradigm for the treatment of prostate cancer bone metastases based on an understanding of tumor cell-microenvironment interactions. J. Cell. Biochem. 96(3): 439–446; 2005.

Lu W.; Luo Y.; Kan M.; McKeehan W. L. Fibroblast growth factor-10. A second candidate stromal to epithelial cell andromedin in prostate. J. Biol. Chem. 274(18): 12827–12834; 1999.

McConnell J. D. Androgen ablation and blockade in the treatment of benign prostatic hyperplasia. Urol. Clin. North Am. 17(3): 661–670; 1990.

Micke P.; Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 45(Suppl 2): S163–S175; 2004.

Planz B.; Aretz H. T.; Wang Q.; Tabatabaei S.; Kirley S. D.; Lin C. W.; McDougal W. S. Immunolocalization of the keratinocyte growth factor in benign and neoplastic human prostate and its relation to androgen receptor. Prostate. 41(4): 233–242; 1999.

Rhee H. W.; Zhau H. E.; Pathak S.; Multani A. S.; Pennanen S.; Visakorpi T.; Chung L. W. Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev. Biol. Anim. 37(3): 127–140; 2001.

Sagalowsky A. I. Endocrine therapy for prostate cancer. Spec. Top Endocrinol. Metab. 7: 101–129; 1985.

Schroder F. H. Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms. Eur. Urol. 53(6): 1129–1137; 2008.

Sensibar J. A.; Liu X. X.; Patai B.; Alger B.; Lee C. Characterization of castration-induced cell death in the rat prostate by immunohistochemical localization of cathepsin D. Prostate. 16(3): 263–276; 1990.

Singh G.; Lakkis C. L.; Laucirica R.; Epner D. E. Regulation of prostate cancer cell division by glucose. J. Cell Physiol. 180(3): 431–438; 1999.

Sung S. Y.; Chung L. W. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation. 70(9–10): 506–521; 2002.

Thalmann G. N.; Sikes R. A.; Wu T. T.; Degeorges A.; Chang S. M.; Ozen M.; Pathak S.; Chung L. W. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate. 44(2): 91–103; 2000.

Tso C. L.; McBride W. H.; Sun J.; Patel B.; Tsui K. H.; Paik S. H.; Gitlitz B.; Caliliw R.; van Ophoven A.; Wu L.; deKernion J.; Belldegrun A. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Cancer J. 6(4): 220–233; 2000.

Wu H. C.; Hsieh J. T.; Gleave M. E.; Brown N. M.; Pathak S.; Chung L. W. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int. J. Cancer. 57(3): 406–412; 1994.

Xu J.; Wang R.; Xie Z. H.; Odero-Marah V.; Pathak S.; Multani A.; Chung L. W.; Zhau H. E. Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate. 66(15): 1664–1673; 2006.

Yan G.; Fukabori Y.; Nikolaropoulos S.; Wang F.; McKeehan W. L. Heparin-binding keratinocyte growth factor is a candidate stromal-to-epithelial-cell andromedin. Mol. Endocrinol. 6(12): 2123–2128; 1992.