Matched pairs of human prostate stromal cells display differential tropic effects on LNCaP prostate cancer cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ayala G.; Tuxhorn J. A.; Wheeler T. M.; Frolov A.; Scardino P. T.; Ohori M.; Wheeler M.; Spitler J.; Rowley D. R. Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer. Clin. Cancer Res. 9(13): 4792–4801; 2003.
Chung L. W. The role of stromal-epithelial interaction in normal and malignant growth. Cancer. Surv. 23: 33–42; 1995.
Chung L. W.; Cunha G. R. Stromal-epithelial interactions: II. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate. 4(5): 503–511; 1983.
Condon M. S. The role of the stromal microenvironment in prostate cancer. Semin. Cancer Biol. 15(2): 132–137; 2005.
Craft N.; Chhor C.; Tran C.; Belldegrun A.; DeKernion J.; Witte O. N.; Said J.; Reiter R. E.; Sawyers C. L. Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 59(19): 5030–5036; 1999.
Cunha G. R. Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer. 74(3 Suppl): 1030–1044; 1994.
Cunha G. R.; Cooke P. S.; Kurita T. Role of stromal-epithelial interactions in hormonal responses. Arch. Histol. Cytol. 67(5): 417–434; 2004.
Cunha G. R.; Foster B.; Thomson A.; Sugimura Y.; Tanji N.; Tsuji M.; Terada N.; Finch P. W.; Donjacour A. A. Growth factors as mediators of androgen action during the development of the male urogenital tract. World J. Urol. 13(5): 264–276; 1995.
Cunha G. R.; Hayward S. W.; Wang Y. Z. Role of stroma in carcinogenesis of the prostate. Differentiation. 70(9–10): 473–485; 2002.
English H. F.; Drago J. R.; Santen R. J. Cellular response to androgen depletion and repletion in the rat ventral prostate: autoradiography and morphometric analysis. Prostate. 7(1): 41–51; 1985.
Fasciana C.; van der Made A. C.; Faber P. W.; Trapman J. Androgen regulation of the rat keratinocyte growth factor (KGF/FGF7) promoter. Biochem. Biophys. Res. Commun. 220(3): 858–863; 1996.
Gleave M.; Hsieh J. T.; Gao C. A.; von Eschenbach A. C.; Chung L. W. Acceleration of human prostate cancer growth in vivo by factors produced by prostate and bone fibroblasts. Cancer Res. 51(14): 3753–3761; 1991.
Harding M. A.; Theodorescu D. Prostate tumor progression and prognosis. interplay of tumor and host factors. Urol. Oncol. 5(6): 258–264; 2000.
He H.; Yang X.; Davidson A. J.; Wu D.; Marshall F. F.; Chung L. W.; Zhau H. E.; Wang R. Progressive epithelial to mesenchymal transitions in ARCaPE prostate cancer cells during xenograft tumor formation and metastasis. Prostate 70: 518–528; 2009.
Kogan-Sakin I.; Cohen M.; Paland N.; Madar S.; Solomon H.; Molchadsky A.; Brosh R.; Buganim Y.; Goldfinger N.; Klocker H.; Schalken J. A.; Rotter V. Prostate stromal cells produce CXCL-1, CXCL-2, CXCL-3 and IL-8 in response to epithelia-secreted IL-1. Carcinogenesis. 30(4): 698–705; 2009.
Koivisto P.; Visakorpi T.; Kallioniemi O. P. Androgen receptor gene amplification: a novel molecular mechanism for endocrine therapy resistance in human prostate cancer. Scand. J. Clin. Lab. Invest. Suppl. 226: 57–63; 1996.
Lippert M. C.; Keefer D. A. Prostate adenocarcinoma: effects of castration on in situ androgen uptake by individual cell types. J. Urol. 137(1): 140–145; 1987.
Loberg R. D.; Gayed B. A.; Olson K. B.; Pienta K. J. A paradigm for the treatment of prostate cancer bone metastases based on an understanding of tumor cell-microenvironment interactions. J. Cell. Biochem. 96(3): 439–446; 2005.
Lu W.; Luo Y.; Kan M.; McKeehan W. L. Fibroblast growth factor-10. A second candidate stromal to epithelial cell andromedin in prostate. J. Biol. Chem. 274(18): 12827–12834; 1999.
McConnell J. D. Androgen ablation and blockade in the treatment of benign prostatic hyperplasia. Urol. Clin. North Am. 17(3): 661–670; 1990.
Micke P.; Ostman A. Tumour-stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer. 45(Suppl 2): S163–S175; 2004.
Planz B.; Aretz H. T.; Wang Q.; Tabatabaei S.; Kirley S. D.; Lin C. W.; McDougal W. S. Immunolocalization of the keratinocyte growth factor in benign and neoplastic human prostate and its relation to androgen receptor. Prostate. 41(4): 233–242; 1999.
Rhee H. W.; Zhau H. E.; Pathak S.; Multani A. S.; Pennanen S.; Visakorpi T.; Chung L. W. Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell Dev. Biol. Anim. 37(3): 127–140; 2001.
Sagalowsky A. I. Endocrine therapy for prostate cancer. Spec. Top Endocrinol. Metab. 7: 101–129; 1985.
Schroder F. H. Progress in understanding androgen-independent prostate cancer (AIPC): a review of potential endocrine-mediated mechanisms. Eur. Urol. 53(6): 1129–1137; 2008.
Sensibar J. A.; Liu X. X.; Patai B.; Alger B.; Lee C. Characterization of castration-induced cell death in the rat prostate by immunohistochemical localization of cathepsin D. Prostate. 16(3): 263–276; 1990.
Singh G.; Lakkis C. L.; Laucirica R.; Epner D. E. Regulation of prostate cancer cell division by glucose. J. Cell Physiol. 180(3): 431–438; 1999.
Sung S. Y.; Chung L. W. Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation. 70(9–10): 506–521; 2002.
Thalmann G. N.; Sikes R. A.; Wu T. T.; Degeorges A.; Chang S. M.; Ozen M.; Pathak S.; Chung L. W. LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate. 44(2): 91–103; 2000.
Tso C. L.; McBride W. H.; Sun J.; Patel B.; Tsui K. H.; Paik S. H.; Gitlitz B.; Caliliw R.; van Ophoven A.; Wu L.; deKernion J.; Belldegrun A. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Cancer J. 6(4): 220–233; 2000.
Wu H. C.; Hsieh J. T.; Gleave M. E.; Brown N. M.; Pathak S.; Chung L. W. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: role of bone stromal cells. Int. J. Cancer. 57(3): 406–412; 1994.
Xu J.; Wang R.; Xie Z. H.; Odero-Marah V.; Pathak S.; Multani A.; Chung L. W.; Zhau H. E. Prostate cancer metastasis: role of the host microenvironment in promoting epithelial to mesenchymal transition and increased bone and adrenal gland metastasis. Prostate. 66(15): 1664–1673; 2006.
Yan G.; Fukabori Y.; Nikolaropoulos S.; Wang F.; McKeehan W. L. Heparin-binding keratinocyte growth factor is a candidate stromal-to-epithelial-cell andromedin. Mol. Endocrinol. 6(12): 2123–2128; 1992.